New objects seizure method in mobile robotic using a visual servoing and neural network classification

M. Trabelsi, N. Aitoufroukh, S. Lelandais
{"title":"New objects seizure method in mobile robotic using a visual servoing and neural network classification","authors":"M. Trabelsi, N. Aitoufroukh, S. Lelandais","doi":"10.1109/CIRA.2005.1554344","DOIUrl":null,"url":null,"abstract":"This paper describes the development of a new objects seizure method in the robotic service framework. Its main objective is to make a manipulator arm equipped with a grip and two sensors (camera and sonar) able to handle objects in a human environment. Ultrasonic information is used by a neural classifier in order to give us object recognition and distance information. In the same time, a camera takes an image of the object. We extract its edges by image processing. So it is possible to match image center and object center. The object seizure strategy uses image and ultrasonic information both. This strategy is applied to two kinds of objects: sphere and cylinder.","PeriodicalId":162553,"journal":{"name":"2005 International Symposium on Computational Intelligence in Robotics and Automation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2005.1554344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes the development of a new objects seizure method in the robotic service framework. Its main objective is to make a manipulator arm equipped with a grip and two sensors (camera and sonar) able to handle objects in a human environment. Ultrasonic information is used by a neural classifier in order to give us object recognition and distance information. In the same time, a camera takes an image of the object. We extract its edges by image processing. So it is possible to match image center and object center. The object seizure strategy uses image and ultrasonic information both. This strategy is applied to two kinds of objects: sphere and cylinder.
基于视觉伺服和神经网络分类的移动机器人目标捕获新方法
本文描述了机器人服务框架中一种新的对象捕获方法的发展。它的主要目标是制造一个机械臂,配备一个手柄和两个传感器(摄像头和声纳),能够在人类环境中处理物体。超声波信息被神经分类器用来给我们提供物体识别和距离信息。与此同时,照相机拍摄物体的图像。通过图像处理提取其边缘。这样就可以实现图像中心和物体中心的匹配。目标捕获策略同时使用图像和超声信息。这种策略适用于两种对象:球体和圆柱体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信