Research on Influencing Factors of Asphalt Pavement International Roughness Index (IRI) Based on Ensemble Learning

Zhiwei Luo, You Zhan, Yang Liu, Allen A. Zhang, Xiuquan Lin, Yurong Zhang
{"title":"Research on Influencing Factors of Asphalt Pavement International Roughness Index (IRI) Based on Ensemble Learning","authors":"Zhiwei Luo, You Zhan, Yang Liu, Allen A. Zhang, Xiuquan Lin, Yurong Zhang","doi":"10.1093/iti/liac014","DOIUrl":null,"url":null,"abstract":"\n International Roughness Index (IRI) is one of the most commonly used indicators to measure pavement surface smoothness. This paper uses the data obtained from the Specific Pavement Studies-3 (SPS-3) of the Long Term Pavement Performance (LTPP) program to study the influencing factors of the International Roughness Index of asphalt pavement. Pavement age, precipitation, freezing index, temperature, traffic volume, traffic load and rutting depth are investigated to evaluate the effectiveness of four preventive maintenance treatments on asphalt pavement surface roughness. The pavement roughness model is established based on the XGBoost algorithm, with a training R2 of 0.96 and a testing R2 of 0.82. The results show that among the four preservation treatments, the IRI of thin overlay is the lowest. Annual Average Daily Traffic (AADT) is identified as the most significant foctor for IRI evaluation, accounting for the most contribution to pavement surface roughness, followed by precipitation, rutting depth, temperature et al.","PeriodicalId":191628,"journal":{"name":"Intelligent Transportation Infrastructure","volume":"694 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Transportation Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/iti/liac014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

International Roughness Index (IRI) is one of the most commonly used indicators to measure pavement surface smoothness. This paper uses the data obtained from the Specific Pavement Studies-3 (SPS-3) of the Long Term Pavement Performance (LTPP) program to study the influencing factors of the International Roughness Index of asphalt pavement. Pavement age, precipitation, freezing index, temperature, traffic volume, traffic load and rutting depth are investigated to evaluate the effectiveness of four preventive maintenance treatments on asphalt pavement surface roughness. The pavement roughness model is established based on the XGBoost algorithm, with a training R2 of 0.96 and a testing R2 of 0.82. The results show that among the four preservation treatments, the IRI of thin overlay is the lowest. Annual Average Daily Traffic (AADT) is identified as the most significant foctor for IRI evaluation, accounting for the most contribution to pavement surface roughness, followed by precipitation, rutting depth, temperature et al.
基于集成学习的沥青路面国际粗糙度指数影响因素研究
国际平整度指数(IRI)是衡量路面平整度最常用的指标之一。本文利用长期路面性能(LTPP)项目的具体路面研究-3 (SPS-3)数据,研究沥青路面国际粗糙度指数的影响因素。研究了路面龄期、降水量、冻结指数、温度、交通量、交通荷载和车辙深度等4种预防性养护措施对沥青路面粗糙度的影响。基于XGBoost算法建立路面粗糙度模型,训练R2为0.96,检验R2为0.82。结果表明:在4种保存处理中,薄覆盖层的IRI最低;年平均日交通流量(AADT)是IRI评价中最重要的因素,对路面粗糙度的贡献最大,其次是降水、车辙深度、温度等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信