A Bayesian Framework for Estimating Weibull Distribution Parameters: Applications in Finance, Insurance, and Natural Disaster Analysis

Mohammad Lawal Danrimi, H. Abubakar
{"title":"A Bayesian Framework for Estimating Weibull Distribution Parameters: Applications in Finance, Insurance, and Natural Disaster Analysis","authors":"Mohammad Lawal Danrimi, H. Abubakar","doi":"10.61143/umyu-jafr.5(1)2023.006","DOIUrl":null,"url":null,"abstract":"This research presents a Bayesian framework for parameter estimation in the two-parameter Weibull distribution, with applications in finance and investment data analysis. The Weibull distribution is widely used for modeling stock pricing movements and making uncertain predictions in financial datasets. The proposed Bayesian approach assumes a gamma prior distribution for the scale parameter, with a known shape parameter. A simulation study using simulated financial data compares the Bayesian method with maximum likelihood estimators in terms of accuracy, error accumulation, and computational time across various sample sizes and parameter values. Results indicate the Bayesian approach performs similarly to maximum likelihood for small samples, while demonstrating computational efficiency for larger financial datasets. The proposed Bayesian model's application to simulated financial data showcases its practical relevance in real-world scenarios. This Bayesian framework offers a valuable tool for handling uncertainty and making informed decisions in financial data analysis, providing robust parameter estimation and uncertainty quantification in finance and investment domains.","PeriodicalId":345386,"journal":{"name":"UMYU Journal of Accounting and Finance Research","volume":"435 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UMYU Journal of Accounting and Finance Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61143/umyu-jafr.5(1)2023.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents a Bayesian framework for parameter estimation in the two-parameter Weibull distribution, with applications in finance and investment data analysis. The Weibull distribution is widely used for modeling stock pricing movements and making uncertain predictions in financial datasets. The proposed Bayesian approach assumes a gamma prior distribution for the scale parameter, with a known shape parameter. A simulation study using simulated financial data compares the Bayesian method with maximum likelihood estimators in terms of accuracy, error accumulation, and computational time across various sample sizes and parameter values. Results indicate the Bayesian approach performs similarly to maximum likelihood for small samples, while demonstrating computational efficiency for larger financial datasets. The proposed Bayesian model's application to simulated financial data showcases its practical relevance in real-world scenarios. This Bayesian framework offers a valuable tool for handling uncertainty and making informed decisions in financial data analysis, providing robust parameter estimation and uncertainty quantification in finance and investment domains.
估计威布尔分布参数的贝叶斯框架:在金融、保险和自然灾害分析中的应用
本文提出了一种用于双参数威布尔分布参数估计的贝叶斯框架,并将其应用于金融和投资数据分析。威布尔分布被广泛用于股票定价运动建模和金融数据集的不确定预测。所提出的贝叶斯方法假设尺度参数具有已知形状参数的gamma先验分布。一项使用模拟金融数据的模拟研究比较了贝叶斯方法与最大似然估计器在不同样本量和参数值的准确性、误差积累和计算时间方面的差异。结果表明,贝叶斯方法对小样本的表现与最大似然相似,同时对较大的金融数据集展示了计算效率。所提出的贝叶斯模型在模拟金融数据中的应用显示了其在现实世界场景中的实际相关性。该贝叶斯框架为处理金融数据分析中的不确定性和做出明智决策提供了一个有价值的工具,为金融和投资领域提供了稳健的参数估计和不确定性量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信