F. Lin, Jonq-Chin Hwang, K. Tan, Zong-Han Lu, Yung-Ruei Chang
{"title":"Control of Doubly-Fed Induction Generator System Using PIDNNs","authors":"F. Lin, Jonq-Chin Hwang, K. Tan, Zong-Han Lu, Yung-Ruei Chang","doi":"10.1109/ICMLA.2010.104","DOIUrl":null,"url":null,"abstract":"An intelligent control stand-alone doubly-fed induction generator (DFIG) system using proportional-integral-derivative neural network (PIDNN) is proposed in this study. This system can be applied as a stand-alone power supply system or as the emergency power system when the electricity grid fails for all sub-synchronous, synchronous and super-synchronous conditions. The rotor side converter is controlled using the field-oriented control to produce three-phase stator voltages with constant magnitude and frequency at different rotor speeds. Moreover, the stator side converter, which is also controlled using field-oriented control, is primarily implemented to maintain the magnitude of the DC-link voltage. Furthermore, the intelligent PIDNN controller is proposed for both the rotor and stator side converters to improve the transient and steady-state responses of the DFIG system for different operating conditions. Both the network structure and on-line learning algorithm are introduced in detail. Finally, the feasibility of the proposed control scheme is verified through experimentation.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"603 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
An intelligent control stand-alone doubly-fed induction generator (DFIG) system using proportional-integral-derivative neural network (PIDNN) is proposed in this study. This system can be applied as a stand-alone power supply system or as the emergency power system when the electricity grid fails for all sub-synchronous, synchronous and super-synchronous conditions. The rotor side converter is controlled using the field-oriented control to produce three-phase stator voltages with constant magnitude and frequency at different rotor speeds. Moreover, the stator side converter, which is also controlled using field-oriented control, is primarily implemented to maintain the magnitude of the DC-link voltage. Furthermore, the intelligent PIDNN controller is proposed for both the rotor and stator side converters to improve the transient and steady-state responses of the DFIG system for different operating conditions. Both the network structure and on-line learning algorithm are introduced in detail. Finally, the feasibility of the proposed control scheme is verified through experimentation.