Estimating interleaved comparison outcomes from historical click data

Katja Hofmann, Shimon Whiteson, M. de Rijke
{"title":"Estimating interleaved comparison outcomes from historical click data","authors":"Katja Hofmann, Shimon Whiteson, M. de Rijke","doi":"10.1145/2396761.2398516","DOIUrl":null,"url":null,"abstract":"Interleaved comparison methods, which compare rankers using click data, are a promising alternative to traditional information retrieval evaluation methods that require expensive explicit judgments. A major limitation of these methods is that they assume access to live data, meaning that new data must be collected for every pair of rankers compared. We investigate the use of previously collected click data (i.e., historical data) for interleaved comparisons. We start by analyzing to what degree existing interleaved comparison methods can be applied and find that a recent probabilistic method allows such data reuse, even though it is biased when applied to historical data. We then propose an interleaved comparison method that is based on the probabilistic approach but uses importance sampling to compensate for bias. We experimentally confirm that probabilistic methods make the use of historical data for interleaved comparisons possible and effective.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Interleaved comparison methods, which compare rankers using click data, are a promising alternative to traditional information retrieval evaluation methods that require expensive explicit judgments. A major limitation of these methods is that they assume access to live data, meaning that new data must be collected for every pair of rankers compared. We investigate the use of previously collected click data (i.e., historical data) for interleaved comparisons. We start by analyzing to what degree existing interleaved comparison methods can be applied and find that a recent probabilistic method allows such data reuse, even though it is biased when applied to historical data. We then propose an interleaved comparison method that is based on the probabilistic approach but uses importance sampling to compensate for bias. We experimentally confirm that probabilistic methods make the use of historical data for interleaved comparisons possible and effective.
估计历史点击数据的交错比较结果
交错比较方法是一种利用点击数据来比较排名的方法,是一种很有前途的替代方法,传统的信息检索评估方法需要昂贵的显式判断。这些方法的一个主要限制是,它们假定可以访问实时数据,这意味着必须为每一对比较的排名器收集新数据。我们调查使用以前收集的点击数据(即历史数据)进行交错比较。我们首先分析现有的交错比较方法可以应用到什么程度,并发现最近的一种概率方法允许这种数据重用,尽管它在应用于历史数据时存在偏差。然后,我们提出了一种基于概率方法的交错比较方法,但使用重要抽样来补偿偏差。我们通过实验证实,概率方法使使用历史数据进行交错比较成为可能和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信