Automated segmentation of spinal diffusion tensor MR imaging

A. Younis, N. Ramirez, P. Pattany, R. J. Burns, M. Sharawy
{"title":"Automated segmentation of spinal diffusion tensor MR imaging","authors":"A. Younis, N. Ramirez, P. Pattany, R. J. Burns, M. Sharawy","doi":"10.1109/SECON.2005.1423243","DOIUrl":null,"url":null,"abstract":"A novel automated segmentation technique is presented for the delineation of white matter and gray matter regions in diffusion tensor magnetic resonance imaging of the spine. The technique involves an automated method for the extraction of the spinal cord regions from the diffusion tensor imaging data and relies on the fuzzy means clustering approach, which is inherently robust. Experimental results obtained for the segmentation of in vitro spinal cord sections of varying ages from 48 to 80 years demonstrate the viability of the automated segmentation technique. Statistical comparison with manually delineated white matter regions indicates the potential of the automated technique for the investigation and analysis of white matter abnormalities in diffusion tensor magnetic resonance imaging of the spine.","PeriodicalId":129377,"journal":{"name":"Proceedings. IEEE SoutheastCon, 2005.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE SoutheastCon, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2005.1423243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A novel automated segmentation technique is presented for the delineation of white matter and gray matter regions in diffusion tensor magnetic resonance imaging of the spine. The technique involves an automated method for the extraction of the spinal cord regions from the diffusion tensor imaging data and relies on the fuzzy means clustering approach, which is inherently robust. Experimental results obtained for the segmentation of in vitro spinal cord sections of varying ages from 48 to 80 years demonstrate the viability of the automated segmentation technique. Statistical comparison with manually delineated white matter regions indicates the potential of the automated technique for the investigation and analysis of white matter abnormalities in diffusion tensor magnetic resonance imaging of the spine.
脊髓弥散张量磁共振成像的自动分割
提出了一种新的自动分割技术,用于脊柱弥散张量磁共振成像中白质和灰质区域的分割。该技术涉及从扩散张量成像数据中自动提取脊髓区域的方法,并依赖于固有鲁棒性的模糊均值聚类方法。对48 ~ 80岁不同年龄的离体脊髓切片进行分割的实验结果证明了自动分割技术的可行性。与人工描绘的白质区域的统计比较表明,在脊柱弥散张量磁共振成像中,自动技术对白质异常的调查和分析具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信