An Effective Krill Herd Algorithm for Numerical Optimization

Hu Songwei, He Lifang, Si Xu, Zhang Yuanyuan, Hao Pengyu
{"title":"An Effective Krill Herd Algorithm for Numerical Optimization","authors":"Hu Songwei, He Lifang, Si Xu, Zhang Yuanyuan, Hao Pengyu","doi":"10.14257/IJHIT.2016.9.7.13","DOIUrl":null,"url":null,"abstract":"The krill herd (KH) algorithm is a novel swarm intelligent algorithm which is inspired the herding behavior of the krill swarms. The various test results in the relevant literature show that the KH algorithm has better performance than the other swarm intelligent algorithm for optimization problem. In order to further improve the performance of the KH algorithm, an improved KH is proposed in this paper. The algorithm is performed on ten test functions and the results are compared with the basic KH algorithm, PSO, DE and GA algorithm. The experimental results indicate that the improved algorithm is a good method for numerical optimization problem.","PeriodicalId":170772,"journal":{"name":"International Journal of Hybrid Information Technology","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hybrid Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJHIT.2016.9.7.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The krill herd (KH) algorithm is a novel swarm intelligent algorithm which is inspired the herding behavior of the krill swarms. The various test results in the relevant literature show that the KH algorithm has better performance than the other swarm intelligent algorithm for optimization problem. In order to further improve the performance of the KH algorithm, an improved KH is proposed in this paper. The algorithm is performed on ten test functions and the results are compared with the basic KH algorithm, PSO, DE and GA algorithm. The experimental results indicate that the improved algorithm is a good method for numerical optimization problem.
一种有效的磷虾群数值优化算法
磷虾群算法是一种新颖的群体智能算法,其灵感来源于磷虾群的羊群行为。相关文献中的各种测试结果表明,KH算法在优化问题上比其他群智能算法具有更好的性能。为了进一步提高KH算法的性能,本文提出了一种改进的KH算法。该算法在10个测试函数上进行了测试,并与基本KH算法、PSO算法、DE算法和GA算法进行了比较。实验结果表明,改进算法是求解数值优化问题的一种好方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信