Automated seizure detection using multilayer feed forward network trained using scaled conjugate gradient method

K. Sivasankari, K. Thanushkodi, K. Kalaivanan
{"title":"Automated seizure detection using multilayer feed forward network trained using scaled conjugate gradient method","authors":"K. Sivasankari, K. Thanushkodi, K. Kalaivanan","doi":"10.1109/ICCTET.2013.6675944","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) is a tool used in the diagnosis of a common neurological disorder Epilepsy. Analysis of long recordings of EEG by visual inspection for epilepsy is quite a tedious process. In this paper, we present an approach for automated epileptic seizure detection by employing Multi layer Perceptron Neural Network (MLPNN) classifier. Independent Component Analysis (ICA), a statistical tool is used for extraction of features. The ascertained signals are trained under supervision by making use of memory efficient and fast Scaled Conjugate Gradient (SCG) backpropagation algorithm. The data set is taken from a publicly available EEG database. The MLPNN is designed with the tan-sigmoid transfer function in the hidden layer and output layer. The network is analyzed using performance metric like Mean Square Error and confusion matrix. The best classification accuracy is about 100% for the overall dataset. This indicates the proposed method has potential in designing a new intelligent EEG-based assistance diagnosis system for early detection of the electroencephalographic changes.","PeriodicalId":242568,"journal":{"name":"2013 International Conference on Current Trends in Engineering and Technology (ICCTET)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Current Trends in Engineering and Technology (ICCTET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTET.2013.6675944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalogram (EEG) is a tool used in the diagnosis of a common neurological disorder Epilepsy. Analysis of long recordings of EEG by visual inspection for epilepsy is quite a tedious process. In this paper, we present an approach for automated epileptic seizure detection by employing Multi layer Perceptron Neural Network (MLPNN) classifier. Independent Component Analysis (ICA), a statistical tool is used for extraction of features. The ascertained signals are trained under supervision by making use of memory efficient and fast Scaled Conjugate Gradient (SCG) backpropagation algorithm. The data set is taken from a publicly available EEG database. The MLPNN is designed with the tan-sigmoid transfer function in the hidden layer and output layer. The network is analyzed using performance metric like Mean Square Error and confusion matrix. The best classification accuracy is about 100% for the overall dataset. This indicates the proposed method has potential in designing a new intelligent EEG-based assistance diagnosis system for early detection of the electroencephalographic changes.
基于尺度共轭梯度法训练的多层前馈网络的癫痫自动检测
脑电图(EEG)是一种用于诊断常见神经系统疾病癫痫的工具。用目测法分析长时间脑电图对癫痫的诊断是一个相当繁琐的过程。本文提出了一种基于多层感知器神经网络(MLPNN)分类器的癫痫发作自动检测方法。独立成分分析(ICA)是一种统计工具,用于提取特征。利用高效存储和快速缩放共轭梯度(SCG)反向传播算法,在监督下对确定的信号进行训练。数据集取自一个公开可用的脑电图数据库。在隐层和输出层设计了tan-s型传递函数的MLPNN。使用均方误差和混淆矩阵等性能指标对网络进行分析。对于整个数据集,最好的分类准确率约为100%。这表明该方法在设计一种新的基于脑电图的智能辅助诊断系统以早期发现脑电图变化方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信