The completeness problem on the product of algebras of finite-valued logic

B. A. Romov
{"title":"The completeness problem on the product of algebras of finite-valued logic","authors":"B. A. Romov","doi":"10.1109/ISMVL.1994.302202","DOIUrl":null,"url":null,"abstract":"Gives a general completeness criterion for the arity-calibrated product P/sub k/xP/sub m/ of the algebras of all functions of the k-valued and m-valued logics (k,m/spl ges/2). The Galois connection between the lattice of subalgebras P/sub k/xP/sub m/ and the lattice of subalgebras of the double-base invariant relations algebra (with operations of restricted first order calculus) is established. This is used to obtain a Slupecki type criterion for P/sub k/xP/sub m/ and to solve the completeness problem in P/sub k/xP/sub m/ (m/spl ges/2).<<ETX>>","PeriodicalId":137138,"journal":{"name":"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1994.302202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Gives a general completeness criterion for the arity-calibrated product P/sub k/xP/sub m/ of the algebras of all functions of the k-valued and m-valued logics (k,m/spl ges/2). The Galois connection between the lattice of subalgebras P/sub k/xP/sub m/ and the lattice of subalgebras of the double-base invariant relations algebra (with operations of restricted first order calculus) is established. This is used to obtain a Slupecki type criterion for P/sub k/xP/sub m/ and to solve the completeness problem in P/sub k/xP/sub m/ (m/spl ges/2).<>
有限值逻辑代数积的完备性问题
给出了k值逻辑和m值逻辑(k,m/spl ges/2)的所有函数的代数P/下标积P/下标k/xP/下标m/的一般完备性判据。建立了子代数格P/ k/xP/ m/与双基不变关系代数(含限制一阶微积分运算)子代数格之间的伽罗瓦联系。利用这一方法得到了P/sub k/xP/sub m/的Slupecki型判据,并解决了P/sub k/xP/sub m/ (m/spl ges/2)的完备性问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信