{"title":"Efficient Text Analysis with Pre-Trained Neural Network Models","authors":"Jia Cui, Heng Lu, Wen Wang, Shiyin Kang, Liqiang He, Guangzhi Li, Dong Yu","doi":"10.1109/SLT54892.2023.10022565","DOIUrl":null,"url":null,"abstract":"This paper investigates the application of pre-trained BERT model in three classic text analysis tasks: Chinese grapheme-to-phoneme(G2P), text normalization(TN) and sentence punctuation annotation. Even though the full-sized BERT has prominent modeling power, there are two challenges for it in real applications: the requirement for annotated training data and the considerable computational cost. In this paper, we propose BERT-based low-latency solutions. To collect sufficient training corpus for G2P, we transfer knowledge from existing rule-based system to BERT through a large amount of unlabeled corpus. The new model could convert all characters directly from raw texts with higher accuracy. We also propose a hybrid two-stage text normalization pipeline which reduces the sentence error rate by 25% compared to the rule-based system. We offer both supervised and weakly supervised versions and find that the latter has only 1% accuracy drop from the former.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10022565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper investigates the application of pre-trained BERT model in three classic text analysis tasks: Chinese grapheme-to-phoneme(G2P), text normalization(TN) and sentence punctuation annotation. Even though the full-sized BERT has prominent modeling power, there are two challenges for it in real applications: the requirement for annotated training data and the considerable computational cost. In this paper, we propose BERT-based low-latency solutions. To collect sufficient training corpus for G2P, we transfer knowledge from existing rule-based system to BERT through a large amount of unlabeled corpus. The new model could convert all characters directly from raw texts with higher accuracy. We also propose a hybrid two-stage text normalization pipeline which reduces the sentence error rate by 25% compared to the rule-based system. We offer both supervised and weakly supervised versions and find that the latter has only 1% accuracy drop from the former.