Bacterial Evolutionary Algorithm-based Feature Selection for Word Sentiment Interpolation in Hungarian Language

Bálint Tamás Rozgonyi, Natabara Máté Gyöngyössy, Beáta Korcsok, J. Botzheim
{"title":"Bacterial Evolutionary Algorithm-based Feature Selection for Word Sentiment Interpolation in Hungarian Language","authors":"Bálint Tamás Rozgonyi, Natabara Máté Gyöngyössy, Beáta Korcsok, J. Botzheim","doi":"10.1109/CINTI53070.2021.9668426","DOIUrl":null,"url":null,"abstract":"With the advancement of social artificial agents the need for correct understanding of sentiment is growing. In this paper we propose a method for building a context-less word-level emotional model of words in the Hungarian language based on Russell's Circumpex model of affect. By utilizing Bacterial Evo-lutionary Algorithm for feature selection, a method for efficient web-based annotation is proposed. Using the latent information of word embeddings multi-layer perceptron networks are trained to realize an interpolative function of two-dimensional emotion vectors over the embedding space. Dimensionality reduction via correlation analysis is also discussed.","PeriodicalId":340545,"journal":{"name":"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI53070.2021.9668426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of social artificial agents the need for correct understanding of sentiment is growing. In this paper we propose a method for building a context-less word-level emotional model of words in the Hungarian language based on Russell's Circumpex model of affect. By utilizing Bacterial Evo-lutionary Algorithm for feature selection, a method for efficient web-based annotation is proposed. Using the latent information of word embeddings multi-layer perceptron networks are trained to realize an interpolative function of two-dimensional emotion vectors over the embedding space. Dimensionality reduction via correlation analysis is also discussed.
基于细菌进化算法的匈牙利语词情感插值特征选择
随着社会人工智能的发展,对情感正确理解的需求越来越大。在本文中,我们提出了一种基于Russell的Circumpex情感模型构建匈牙利语中无上下文词级情感模型的方法。利用细菌进化算法进行特征选择,提出了一种高效的基于web的标注方法。利用词嵌入的潜在信息训练多层感知器网络,实现二维情感向量在嵌入空间上的插值函数。并讨论了相关分析的降维方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信