Cumulative Inductive Types In Coq

Amin Timany, Matthieu Sozeau
{"title":"Cumulative Inductive Types In Coq","authors":"Amin Timany, Matthieu Sozeau","doi":"10.4230/LIPIcs.FSCD.2018.29","DOIUrl":null,"url":null,"abstract":"In order to avoid well-known paradoxes associated with self-referential definitions, higher-order dependent type theories stratify the theory using a countably infinite hierarchy of universes (also known as sorts), Type_0 : Type_1 : *s. Such type systems are called cumulative if for any type A we have that A : Type_i implies A : Type_{i+1}. The Predicative Calculus of Inductive Constructions (pCIC) which forms the basis of the Coq proof assistant, is one such system. In this paper we present the Predicative Calculus of Cumulative Inductive Constructions (pCuIC) which extends the cumulativity relation to inductive types. We discuss cumulative inductive types as present in Coq 8.7 and their application to formalization and definitional translations.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSCD.2018.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In order to avoid well-known paradoxes associated with self-referential definitions, higher-order dependent type theories stratify the theory using a countably infinite hierarchy of universes (also known as sorts), Type_0 : Type_1 : *s. Such type systems are called cumulative if for any type A we have that A : Type_i implies A : Type_{i+1}. The Predicative Calculus of Inductive Constructions (pCIC) which forms the basis of the Coq proof assistant, is one such system. In this paper we present the Predicative Calculus of Cumulative Inductive Constructions (pCuIC) which extends the cumulativity relation to inductive types. We discuss cumulative inductive types as present in Coq 8.7 and their application to formalization and definitional translations.
Coq中的累积归纳类型
为了避免与自我引用定义相关的众所周知的悖论,高阶依赖类型理论使用可数无限宇宙层次(也称为排序)Type_0: Type_1: *s对理论进行分层。如果对于任何类型A, A: Type_i意味着A: Type_{i+1},这样的类型系统被称为累积类型系统。作为Coq证明辅助工具基础的归纳构造的谓词演算(pCIC)就是这样一个系统。本文提出了累积归纳构造的谓词演算(pCuIC),将累积关系推广到归纳类型。我们讨论coq8.7中出现的累积归纳类型及其在形式化和定义翻译中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信