{"title":"Fractional Order Savitzky-Golay Differentiator based Approach for Mammogram Enhancement","authors":"K. K. Singh, M. Bajpai","doi":"10.1109/IST48021.2019.9010231","DOIUrl":null,"url":null,"abstract":"Mammogram enhancement plays vital role in detection of abnormality present in low contrast mammogram images. This paper explores a new application of Fractional Order Savitzky-Golay(SG) Differentiator for mammogram enhancement. It encompasses a new approach for low contrast mammogram image enhancement based on the concept of convolution. The enhancement is performed by three different test cases. The performance of proposed approaches is validated with quantitative as well as visual results. The result shows that the proposed algorithm produces better results. The effect of size of differentiator and order of derivative has also been analyzed.","PeriodicalId":117219,"journal":{"name":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST48021.2019.9010231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Mammogram enhancement plays vital role in detection of abnormality present in low contrast mammogram images. This paper explores a new application of Fractional Order Savitzky-Golay(SG) Differentiator for mammogram enhancement. It encompasses a new approach for low contrast mammogram image enhancement based on the concept of convolution. The enhancement is performed by three different test cases. The performance of proposed approaches is validated with quantitative as well as visual results. The result shows that the proposed algorithm produces better results. The effect of size of differentiator and order of derivative has also been analyzed.