Evaluation of text-processing algorithms for adverse drug event extraction from social media

Alejandro Metke-Jimenez, Sarvnaz Karimi, Cécile Paris
{"title":"Evaluation of text-processing algorithms for adverse drug event extraction from social media","authors":"Alejandro Metke-Jimenez, Sarvnaz Karimi, Cécile Paris","doi":"10.1145/2632188.2632200","DOIUrl":null,"url":null,"abstract":"The discovery of suspected adverse drug reactions is no longer restricted to mining reports that pharmaceutical companies and health professionals send to regulators for possible safety signals. Patient forums and other social media are being studied for additional sources of information to assist in expediting adverse reaction discovery. Extracting information on drugs, adverse drug reactions, diseases and symptoms, or patient demographics from such media is an essential step of this process, but it is not straightforward. While most studies in this area use a lexicon-based information extraction methodology, they do not explicitly evaluate the impact of text-processing steps on their final results. We experimentally quantify the value of the most popular techniques to establish whether or not they benefit the information extraction process.","PeriodicalId":178656,"journal":{"name":"Proceedings of the first international workshop on Social media retrieval and analysis","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the first international workshop on Social media retrieval and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632188.2632200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The discovery of suspected adverse drug reactions is no longer restricted to mining reports that pharmaceutical companies and health professionals send to regulators for possible safety signals. Patient forums and other social media are being studied for additional sources of information to assist in expediting adverse reaction discovery. Extracting information on drugs, adverse drug reactions, diseases and symptoms, or patient demographics from such media is an essential step of this process, but it is not straightforward. While most studies in this area use a lexicon-based information extraction methodology, they do not explicitly evaluate the impact of text-processing steps on their final results. We experimentally quantify the value of the most popular techniques to establish whether or not they benefit the information extraction process.
从社交媒体中提取不良药物事件的文本处理算法评价
发现可疑的药物不良反应不再局限于制药公司和卫生专业人员向监管机构发送可能的安全信号的报告。正在研究患者论坛和其他社交媒体,以寻找额外的信息来源,以帮助加快不良反应的发现。从这种媒体中提取有关药物、药物不良反应、疾病和症状或患者人口统计资料的信息是这一进程的一个重要步骤,但这并不简单。虽然该领域的大多数研究使用基于词典的信息提取方法,但它们没有明确评估文本处理步骤对最终结果的影响。我们通过实验量化了最流行的技术的价值,以确定它们是否有利于信息提取过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信