Tuning MPC for desired closed-loop performance for SISO systems

Gaurang Shah, S. Engell
{"title":"Tuning MPC for desired closed-loop performance for SISO systems","authors":"Gaurang Shah, S. Engell","doi":"10.1109/MED.2010.5547799","DOIUrl":null,"url":null,"abstract":"Model Predictive Control (MPC) is widely used in the process industries. A successful implementation of MPC involves the setting of a considerable number of parameters which must be appropriately tuned. Despite a number of publications on MPC tuning, there is a lack of a systematic approach that relates MPC tuning to linear control theory. In this paper, a systematic tuning of the prediction horizon, the control horizon and the penalty weights is discussed such that desired closed-loop pole and zero locations result as long as the constraints are not active. We verify our approach on two challenging examples.","PeriodicalId":149864,"journal":{"name":"18th Mediterranean Conference on Control and Automation, MED'10","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Mediterranean Conference on Control and Automation, MED'10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2010.5547799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Model Predictive Control (MPC) is widely used in the process industries. A successful implementation of MPC involves the setting of a considerable number of parameters which must be appropriately tuned. Despite a number of publications on MPC tuning, there is a lack of a systematic approach that relates MPC tuning to linear control theory. In this paper, a systematic tuning of the prediction horizon, the control horizon and the penalty weights is discussed such that desired closed-loop pole and zero locations result as long as the constraints are not active. We verify our approach on two challenging examples.
调优MPC以获得理想的SISO系统闭环性能
模型预测控制(MPC)在过程工业中有着广泛的应用。MPC的成功实施涉及大量参数的设置,这些参数必须适当调整。尽管有许多关于MPC调谐的出版物,但缺乏将MPC调谐与线性控制理论联系起来的系统方法。本文讨论了预测水平、控制水平和惩罚权值的系统整定,使得只要约束不活跃,就能得到期望的闭环极点和零点位置。我们用两个具有挑战性的例子验证了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信