Constructions of near MDS codes which are optimal locally recoverable codes

Xiaoru Li, Ziling Heng
{"title":"Constructions of near MDS codes which are optimal locally recoverable codes","authors":"Xiaoru Li, Ziling Heng","doi":"10.48550/arXiv.2204.11208","DOIUrl":null,"url":null,"abstract":"A linear code with parameters $[n,k,n-k]$ is said to be almost maximum distance separable (AMDS for short). An AMDS code whose dual is also AMDS is referred to as an near maximum distance separable (NMDS for short) code. NMDS codes have nice applications in finite geometry, combinatorics, cryptography and data storage. In this paper, we first present several constructions of NMDS codes and determine their weight enumerators. In particular, some constructions produce NMDS codes with the same parameters but different weight enumerators. Then we determine the locality of the NMDS codes and obtain many families of distance-optimal and dimension-optimal locally repairable codes.","PeriodicalId":156673,"journal":{"name":"Finite Fields Their Appl.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields Their Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.11208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A linear code with parameters $[n,k,n-k]$ is said to be almost maximum distance separable (AMDS for short). An AMDS code whose dual is also AMDS is referred to as an near maximum distance separable (NMDS for short) code. NMDS codes have nice applications in finite geometry, combinatorics, cryptography and data storage. In this paper, we first present several constructions of NMDS codes and determine their weight enumerators. In particular, some constructions produce NMDS codes with the same parameters but different weight enumerators. Then we determine the locality of the NMDS codes and obtain many families of distance-optimal and dimension-optimal locally repairable codes.
近MDS码的构造是最优的局部可恢复码
具有参数$[n,k,n-k]$的线性码称为几乎最大距离可分离码(简称AMDS)。双码也是AMDS的AMDS码称为近最大距离可分离码(NMDS)。NMDS代码在有限几何、组合学、密码学和数据存储中有很好的应用。在本文中,我们首先提出了几种NMDS码的结构,并确定了它们的权重枚举数。特别是,某些结构产生具有相同参数但权重枚举数不同的NMDS代码。然后确定了NMDS码的局部性,得到了许多距离最优和维数最优的局部可修码族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信