A New Framework Using PCA, LDA and KNN-SVM to Activity Recognition Based SmartPhone’s Sensors

Ihssene Menhour, M. Abidine, B. Fergani
{"title":"A New Framework Using PCA, LDA and KNN-SVM to Activity Recognition Based SmartPhone’s Sensors","authors":"Ihssene Menhour, M. Abidine, B. Fergani","doi":"10.1109/ICMCS.2018.8525987","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a new model to perform automatic recognition of activities using Smartphones data from a gyroscope and accelerometer sensors. We target assisted living applications such as activity monitoring for the disabled and the elderly persons. The proposed method combine the Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA) for dimension reduction and KNN-SVM using K-Nearest Neighbors (KNN) with Support Vector Machines (SVM) allowing to better discrimination between the classes of activities. Several experiments performed with real datasets shows a significant improvement of our proposed approach in terms of recognition performance.","PeriodicalId":272255,"journal":{"name":"2018 6th International Conference on Multimedia Computing and Systems (ICMCS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Multimedia Computing and Systems (ICMCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCS.2018.8525987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we proposed a new model to perform automatic recognition of activities using Smartphones data from a gyroscope and accelerometer sensors. We target assisted living applications such as activity monitoring for the disabled and the elderly persons. The proposed method combine the Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA) for dimension reduction and KNN-SVM using K-Nearest Neighbors (KNN) with Support Vector Machines (SVM) allowing to better discrimination between the classes of activities. Several experiments performed with real datasets shows a significant improvement of our proposed approach in terms of recognition performance.
基于PCA、LDA和KNN-SVM的智能手机传感器活动识别新框架
在本文中,我们提出了一个新的模型来执行自动识别的活动使用智能手机数据从陀螺仪和加速度计传感器。我们的目标是辅助生活应用,如残疾人和老年人的活动监测。该方法结合了主成分分析(PCA)或线性判别分析(LDA)进行降维,以及使用k -近邻(KNN)和支持向量机(SVM)的KNN-SVM,从而更好地区分活动类别。在真实数据集上进行的几个实验表明,我们提出的方法在识别性能方面有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信