{"title":"Sparsity recovery by iterative orthogonal projections of nonlinear mappings","authors":"A. Adamo, G. Grossi","doi":"10.1109/isspit.2011.6151555","DOIUrl":null,"url":null,"abstract":"This paper provides a new regularization method for sparse representation based on a fixed-point iteration schema which combines two Lipschitzian-type mappings, a nonlinear one aimed to uniformly enhance the sparseness level of a candidate solution and a linear one which projects back into the feasible space of solutions. It is shown that this strategy locally minimizes a problem whose objective function falls into the class of the ℓp-norm and represents an efficient approximation of the intractable problem focusing on the ℓ0-norm. Numerical experiments on randomly generated signals using classical stochastic models show better performances of the proposed technique with respect to a wide collection of well known algorithms for sparse representation.","PeriodicalId":288042,"journal":{"name":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/isspit.2011.6151555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper provides a new regularization method for sparse representation based on a fixed-point iteration schema which combines two Lipschitzian-type mappings, a nonlinear one aimed to uniformly enhance the sparseness level of a candidate solution and a linear one which projects back into the feasible space of solutions. It is shown that this strategy locally minimizes a problem whose objective function falls into the class of the ℓp-norm and represents an efficient approximation of the intractable problem focusing on the ℓ0-norm. Numerical experiments on randomly generated signals using classical stochastic models show better performances of the proposed technique with respect to a wide collection of well known algorithms for sparse representation.