SenHint: A Joint Framework for Aspect-level Sentiment Analysis by Deep Neural Networks and Linguistic Hints

Yanyan Wang, Qun Chen, Xin Liu, Ahmed Murtadha, Zhanhuai Li, Wei Pan, Hailong Liu
{"title":"SenHint: A Joint Framework for Aspect-level Sentiment Analysis by Deep Neural Networks and Linguistic Hints","authors":"Yanyan Wang, Qun Chen, Xin Liu, Ahmed Murtadha, Zhanhuai Li, Wei Pan, Hailong Liu","doi":"10.1145/3184558.3186980","DOIUrl":null,"url":null,"abstract":"The state-of-the-art techniques for aspect-level sentiment analysis focus on feature modeling using a variety of deep neural networks (DNN). Unfortunately, their practical performance may fall short of expectations due to semantic complexity of natural languages. Motivated by the observation that linguistic hints (e.g. explicit sentiment words and shift words) can be strong indicators of sentiment, we present a joint framework, SenHint, which integrates the output of deep neural networks and the implication of linguistic hints into a coherent reasoning model based on Markov Logic Network (MLN). In SenHint, linguistic hints are used in two ways: (1) to identify easy instances, whose sentiment can be automatically determined by machine with high accuracy; (2) to capture implicit relations between aspect polarities. We also empirically evaluate the performance of SenHint on both English and Chinese benchmark datasets. Our experimental results show that SenHint can effectively improve accuracy compared with the state-of-the-art alternatives.","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3186980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The state-of-the-art techniques for aspect-level sentiment analysis focus on feature modeling using a variety of deep neural networks (DNN). Unfortunately, their practical performance may fall short of expectations due to semantic complexity of natural languages. Motivated by the observation that linguistic hints (e.g. explicit sentiment words and shift words) can be strong indicators of sentiment, we present a joint framework, SenHint, which integrates the output of deep neural networks and the implication of linguistic hints into a coherent reasoning model based on Markov Logic Network (MLN). In SenHint, linguistic hints are used in two ways: (1) to identify easy instances, whose sentiment can be automatically determined by machine with high accuracy; (2) to capture implicit relations between aspect polarities. We also empirically evaluate the performance of SenHint on both English and Chinese benchmark datasets. Our experimental results show that SenHint can effectively improve accuracy compared with the state-of-the-art alternatives.
SenHint:一种基于深度神经网络和语言提示的方面级情感分析联合框架
最先进的方面级情感分析技术侧重于使用各种深度神经网络(DNN)进行特征建模。不幸的是,由于自然语言的语义复杂性,它们的实际性能可能达不到预期。观察到语言暗示(如明确的情感词和移位词)可以成为情感的强烈指标,我们提出了一个联合框架SenHint,它将深度神经网络的输出和语言暗示的含义集成到一个基于马尔可夫逻辑网络(MLN)的连贯推理模型中。在SenHint中,语言提示主要用于两个方面:(1)识别简单的实例,机器可以自动判断其情绪,准确率很高;(2)捕捉向极性之间的隐含关系。我们还对SenHint在英文和中文基准数据集上的性能进行了实证评估。我们的实验结果表明,与现有的替代方法相比,SenHint可以有效地提高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信