{"title":"Single-epoch real-time differential positioning with BDS triple-frequency wide-lane combination","authors":"Yanheng Wang, S. Pan, Ruicheng Zhang, H. Hu","doi":"10.1109/CPGPS.2017.8075130","DOIUrl":null,"url":null,"abstract":"The users of real time kinematic(RTK) still base on basic frequency carrier for ambiguity resolution(AR) and positioning, which leads to impossibility for positioning instantaneously. However, higher timeliness instead of precision by centimeter level is in high and increasing demand in some areas. Therefore, a method of single-epoch ambiguity resolution and positioning was researched in the paper. Firstly, (0,-1,1) extra-wide-lane(EWL) combination was fixed using Melbourne-Wübbena method. Then, (1,0,-1) wide-lane(WL) was fixed with aid of (0,-1,1). Finally, the performance of positioning with WL was tested. The test was conducted in the paper using a baseline of Jiangsu province Continuously Operating Reference Stations on 41.5km and a baseline in Huangpu district of Guangzhou City on 8km. The results showed that the success rate of single-epoch AR reached 99.9% and both horizontal and zenith direction were better than 30cm of 8km. And the success rate reached 99.9%, the horizontal direction was better than 25cm and the zenith direction was better than 35cm of 41.5km. The conclusion has been proved that the method would get great performance in AR in single-epoch of short-range and medium-range baseline and precision of positioning by decimeter level.","PeriodicalId":340067,"journal":{"name":"2017 Forum on Cooperative Positioning and Service (CPGPS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Forum on Cooperative Positioning and Service (CPGPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPGPS.2017.8075130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The users of real time kinematic(RTK) still base on basic frequency carrier for ambiguity resolution(AR) and positioning, which leads to impossibility for positioning instantaneously. However, higher timeliness instead of precision by centimeter level is in high and increasing demand in some areas. Therefore, a method of single-epoch ambiguity resolution and positioning was researched in the paper. Firstly, (0,-1,1) extra-wide-lane(EWL) combination was fixed using Melbourne-Wübbena method. Then, (1,0,-1) wide-lane(WL) was fixed with aid of (0,-1,1). Finally, the performance of positioning with WL was tested. The test was conducted in the paper using a baseline of Jiangsu province Continuously Operating Reference Stations on 41.5km and a baseline in Huangpu district of Guangzhou City on 8km. The results showed that the success rate of single-epoch AR reached 99.9% and both horizontal and zenith direction were better than 30cm of 8km. And the success rate reached 99.9%, the horizontal direction was better than 25cm and the zenith direction was better than 35cm of 41.5km. The conclusion has been proved that the method would get great performance in AR in single-epoch of short-range and medium-range baseline and precision of positioning by decimeter level.