Fast Root Finding for Interpolation-Based Decoding of Interleaved Gabidulin Codes

H. Bartz, Thomas Jerkovits, S. Puchinger, J. Rosenkilde
{"title":"Fast Root Finding for Interpolation-Based Decoding of Interleaved Gabidulin Codes","authors":"H. Bartz, Thomas Jerkovits, S. Puchinger, J. Rosenkilde","doi":"10.1109/ITW44776.2019.8989290","DOIUrl":null,"url":null,"abstract":"We show that the root-finding step in interpolation-based decoding of interleaved Gabidulin codes can be solved by finding a so-called minimal approximant basis of a matrix over a linearized polynomial ring. Based on existing fast algorithms for computing such bases over ordinary polynomial rings, we develop fast algorithms for computing them over linearized polynomials. As a result, root finding costs $O^{\\sim}(\\ell^{\\omega}\\mathcal{M}(n))$ operations in $F_{q^{m}}$, where ℓ is the interleaving degree, n the code length, $F_{q^{m}}$ the base field of the code, $2 \\leq \\omega \\leq 3$ the matrix multiplication exponent, and $\\mathcal{M}(n) \\in O(n^{1635})$ is the complexity of multiplying two linearized polynomials of degree at most n. This is an asymptotic improvement upon the previously fastest algorithm of complexity $O(\\ell^{3}n^{2})$, in some cases $O(\\ell^{2}n^{2})$.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We show that the root-finding step in interpolation-based decoding of interleaved Gabidulin codes can be solved by finding a so-called minimal approximant basis of a matrix over a linearized polynomial ring. Based on existing fast algorithms for computing such bases over ordinary polynomial rings, we develop fast algorithms for computing them over linearized polynomials. As a result, root finding costs $O^{\sim}(\ell^{\omega}\mathcal{M}(n))$ operations in $F_{q^{m}}$, where ℓ is the interleaving degree, n the code length, $F_{q^{m}}$ the base field of the code, $2 \leq \omega \leq 3$ the matrix multiplication exponent, and $\mathcal{M}(n) \in O(n^{1635})$ is the complexity of multiplying two linearized polynomials of degree at most n. This is an asymptotic improvement upon the previously fastest algorithm of complexity $O(\ell^{3}n^{2})$, in some cases $O(\ell^{2}n^{2})$.
基于插值的交错Gabidulin码解码的快速根查找
我们证明了基于插值的交错Gabidulin码解码中的寻根步骤可以通过寻找线性化多项式环上矩阵的所谓最小近似基来解决。基于现有的在普通多项式环上计算这些基的快速算法,我们开发了在线性化多项式上计算这些基的快速算法。因此,在$F_{q^{m}}$中查找根需要$O^{\sim}(\ell^{\omega}\mathcal{M}(n))$操作,其中,r是交错度,n是代码长度,$F_{q^{m}}$是代码的基域,$2 \leq \omega \leq 3$是矩阵乘法指数,$\mathcal{M}(n) \in O(n^{1635})$是两个次数最多为n的线性化多项式相乘的复杂度。这是对之前最快的复杂度$O(\ell^{3}n^{2})$算法的渐进改进,在某些情况下为$O(\ell^{2}n^{2})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信