Distributed Connected Dominating Set Construction in Geometric k-Disk Graphs

Kai Xing, Wei Cheng, E. Park, S. Rotenstreich
{"title":"Distributed Connected Dominating Set Construction in Geometric k-Disk Graphs","authors":"Kai Xing, Wei Cheng, E. Park, S. Rotenstreich","doi":"10.1109/ICDCS.2008.39","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of minimum connected dominating set in geometric k-disk graphs. This research is motivated by the problem of virtual backbone construction in wireless ad hoc and sensor networks, where the coverage area of nodes are disks with different radii. We derive the size relationship of any maximal independent set and the minimum connected dominating set in geometric k-disk graphs, and apply it to analyze the performances of two distributed connected dominating set algorithms we propose in this paper. These algorithms have a bounded performance ratio and low communication overhead, and therefore have the potential to be applied in real ad hoc and sensor networks.","PeriodicalId":240205,"journal":{"name":"2008 The 28th International Conference on Distributed Computing Systems","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The 28th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2008.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper, we study the problem of minimum connected dominating set in geometric k-disk graphs. This research is motivated by the problem of virtual backbone construction in wireless ad hoc and sensor networks, where the coverage area of nodes are disks with different radii. We derive the size relationship of any maximal independent set and the minimum connected dominating set in geometric k-disk graphs, and apply it to analyze the performances of two distributed connected dominating set algorithms we propose in this paper. These algorithms have a bounded performance ratio and low communication overhead, and therefore have the potential to be applied in real ad hoc and sensor networks.
几何k盘图的分布连通支配集构造
本文研究几何k盘图的最小连通支配集问题。针对无线自组网和传感器网络中节点覆盖区域为不同半径磁盘的虚拟主干网构建问题,进行了本课题的研究。我们导出了几何k盘图中任意最大独立集与最小连通控制集的大小关系,并应用它分析了本文提出的两种分布式连通控制集算法的性能。这些算法具有有限的性能比和较低的通信开销,因此在实际的自组网和传感器网络中具有应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信