Impact of Brownian motion and thermophoresis on entropy generation in a cavity containing microorganisms

V. Meenakshi, Jamuna Bodduna, M. Mallesh, C. S. Balla
{"title":"Impact of Brownian motion and thermophoresis on entropy generation in a cavity containing microorganisms","authors":"V. Meenakshi, Jamuna Bodduna, M. Mallesh, C. S. Balla","doi":"10.1080/15502287.2023.2185554","DOIUrl":null,"url":null,"abstract":"Abstract The present article examined the impact of Brownian motion and thermophoresis on entropy generation of bioconvective flow in a porous cavity filled with nanofluid and gyrotactic microorganisms. Darcy’s Boussinesq approximation is implemented to tackle the porosity term in the momentum expression. The governing partial differential equations (PDEs) are highly nonlinear and are nondimensionalized through the suitable similarity constraints. Finite difference method (FDM) is employed to solve the transformed PDEs. The reaction of entropy generation against various quantities like, Brownian movement (Nb), thermophoresis (Nt), Lewis number (Le) and Schmidt number (Sc) is explored and visualized. The entropies by heat transportation and mass transmission of microorganisms are also focused. An improvement in Lewis number, Schmidth number and Brownian motion corresponds a gradual decline in the local entropies by heat transportation, mass transfer of microorganism and local Bejan number. Thermophoretic force accelerates the distribution of local Bejan number.","PeriodicalId":315058,"journal":{"name":"International Journal for Computational Methods in Engineering Science and Mechanics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Computational Methods in Engineering Science and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15502287.2023.2185554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The present article examined the impact of Brownian motion and thermophoresis on entropy generation of bioconvective flow in a porous cavity filled with nanofluid and gyrotactic microorganisms. Darcy’s Boussinesq approximation is implemented to tackle the porosity term in the momentum expression. The governing partial differential equations (PDEs) are highly nonlinear and are nondimensionalized through the suitable similarity constraints. Finite difference method (FDM) is employed to solve the transformed PDEs. The reaction of entropy generation against various quantities like, Brownian movement (Nb), thermophoresis (Nt), Lewis number (Le) and Schmidt number (Sc) is explored and visualized. The entropies by heat transportation and mass transmission of microorganisms are also focused. An improvement in Lewis number, Schmidth number and Brownian motion corresponds a gradual decline in the local entropies by heat transportation, mass transfer of microorganism and local Bejan number. Thermophoretic force accelerates the distribution of local Bejan number.
布朗运动和热泳对含微生物腔内熵产的影响
摘要:本文研究了布朗运动和热泳运动对纳米流体和陀螺仪微生物填充的多孔腔中生物对流熵产的影响。采用Darcy的Boussinesq近似来处理动量表达式中的孔隙度项。控制偏微分方程是高度非线性的,通过适当的相似约束实现了非量纲化。利用有限差分法求解变换后的偏微分方程。研究了熵生成对布朗运动(Nb)、热泳运动(Nt)、路易斯数(Le)和施密特数(Sc)等物理量的反应,并将其可视化。对微生物的热传递熵和传质熵也进行了讨论。Lewis数、Schmidth数和Brownian运动的提高对应着局部热传递熵、微生物传质熵和局部Bejan数的逐渐下降。热泳力加速了局部贝让数的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信