Typical Scenario Extraction of Distributed Rooftop Photovoltaic Power Output Using Improved Deep Convolutional Embedded Clustering

Fude Dong, Zilu Li, Yuantu Xu, Deqiang Zhu, Rongjie Huang, Haobin Zou, Xiangang Peng
{"title":"Typical Scenario Extraction of Distributed Rooftop Photovoltaic Power Output Using Improved Deep Convolutional Embedded Clustering","authors":"Fude Dong, Zilu Li, Yuantu Xu, Deqiang Zhu, Rongjie Huang, Haobin Zou, Xiangang Peng","doi":"10.1109/CEEPE58418.2023.10167066","DOIUrl":null,"url":null,"abstract":"The increase of the penetration rate of distributed rooftop photovoltaic (PV) in the distribution network brings uncertainties to the distribution network operation scenarios. It is difficult to meet the actual demand relying on manual operation to extract typical scenarios. To tackle this issue, this paper proposes an improved One-dimensional Deep Convolutional Embedded Clustering with ResNet Autoencoder (1D-RDCEC) based scenario reduction method to extract typical PV power output scenarios. Massive PV power output scenarios are generated by Conditional Generative Adversarial Networks (CGAN) with monthly labels, in order to provide sufficient and high-quality scenario set for the subsequent extraction of typical scenarios. 1D-RDCEC first uses a One-Dimensional Convolutional Autoencoder adding residual connection (1D-RCAE) to extract the latent features of PV power output. Then, a custom clustering layer is used to soft assign the extracted latent features. Finally, the clustering loss and reconstruction loss are combined as a joint optimization to extract typical scenarios of distributed rooftop PV power output. Experiments on Australian distribution network datasets have demonstrated the effectiveness of the proposed method.","PeriodicalId":431552,"journal":{"name":"2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEPE58418.2023.10167066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increase of the penetration rate of distributed rooftop photovoltaic (PV) in the distribution network brings uncertainties to the distribution network operation scenarios. It is difficult to meet the actual demand relying on manual operation to extract typical scenarios. To tackle this issue, this paper proposes an improved One-dimensional Deep Convolutional Embedded Clustering with ResNet Autoencoder (1D-RDCEC) based scenario reduction method to extract typical PV power output scenarios. Massive PV power output scenarios are generated by Conditional Generative Adversarial Networks (CGAN) with monthly labels, in order to provide sufficient and high-quality scenario set for the subsequent extraction of typical scenarios. 1D-RDCEC first uses a One-Dimensional Convolutional Autoencoder adding residual connection (1D-RCAE) to extract the latent features of PV power output. Then, a custom clustering layer is used to soft assign the extracted latent features. Finally, the clustering loss and reconstruction loss are combined as a joint optimization to extract typical scenarios of distributed rooftop PV power output. Experiments on Australian distribution network datasets have demonstrated the effectiveness of the proposed method.
基于改进深度卷积嵌入聚类的分布式屋顶光伏输出典型场景提取
分布式屋顶光伏在配电网中渗透率的提高,给配电网运行场景带来了不确定性。依靠人工操作提取典型场景很难满足实际需求。针对这一问题,本文提出了一种改进的基于一维深度卷积嵌入聚类与ResNet自动编码器(1D-RDCEC)的场景约简方法,提取典型光伏发电输出场景。通过带月标签的条件生成对抗网络(Conditional Generative Adversarial Networks, CGAN)生成大量光伏发电输出场景,为后续典型场景的提取提供充足、高质量的场景集。1d - rcac首先使用一维卷积加残差连接自编码器(1D-RCAE)提取光伏输出的潜在特征。然后,使用自定义聚类层对提取的潜在特征进行软分配。最后,结合聚类损失和重建损失进行联合优化,提取出分布式屋顶光伏发电输出的典型场景。在澳大利亚配电网数据集上的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信