ERGP: A Combined Entity Resolution Approach with Genetic Programming

Chenchen Sun, Derong Shen, Yue Kou, Tiezheng Nie, Ge Yu
{"title":"ERGP: A Combined Entity Resolution Approach with Genetic Programming","authors":"Chenchen Sun, Derong Shen, Yue Kou, Tiezheng Nie, Ge Yu","doi":"10.1109/WISA.2014.46","DOIUrl":null,"url":null,"abstract":"Entities often hold more than one representation with some expressive errors in different data sources in the real world. Different representations and a few possible expressive errors make entities identifying a crucial task in data integration and data cleaning, which is known as entity resolution. We propose a novel approach for entity resolution using genetic programming named Entity Resolution with Genetic Programming (ERGP). ERGP is able to learn to get an effective entity resolution classifier by combining several different properties' comparisons. The evaluation shows that ERGP outperforms the state-of-the-art entity resolution algorithms. Above all the ERGP approach is capable of setting the threshold for each single comparison of an attributes' pair, leaving no burden of setting thresholds to the user.","PeriodicalId":366169,"journal":{"name":"2014 11th Web Information System and Application Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th Web Information System and Application Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2014.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Entities often hold more than one representation with some expressive errors in different data sources in the real world. Different representations and a few possible expressive errors make entities identifying a crucial task in data integration and data cleaning, which is known as entity resolution. We propose a novel approach for entity resolution using genetic programming named Entity Resolution with Genetic Programming (ERGP). ERGP is able to learn to get an effective entity resolution classifier by combining several different properties' comparisons. The evaluation shows that ERGP outperforms the state-of-the-art entity resolution algorithms. Above all the ERGP approach is capable of setting the threshold for each single comparison of an attributes' pair, leaving no burden of setting thresholds to the user.
一种结合遗传规划的实体解析方法
在现实世界中,实体通常在不同的数据源中持有多个表示形式,这些表示形式存在一些表达错误。不同的表示和一些可能的表达错误使得实体识别成为数据集成和数据清理中的关键任务,即实体解析。本文提出了一种基于遗传规划的实体解析方法——基于遗传规划的实体解析(ERGP)。ERGP能够通过结合几种不同属性的比较来学习得到一个有效的实体解析分类器。评价表明,ERGP优于最先进的实体分辨率算法。最重要的是,ERGP方法能够为每个属性对的单个比较设置阈值,而不给用户留下设置阈值的负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信