Speaker recognition using adaptively boosted classifier

S. Foo, Eng Guan Lim
{"title":"Speaker recognition using adaptively boosted classifier","authors":"S. Foo, Eng Guan Lim","doi":"10.1109/TENCON.2001.949632","DOIUrl":null,"url":null,"abstract":"A novel approach for speaker recognition is proposed. The system makes use of adaptive boosting (AdaBoost) and multilayer perceptrons (MLP) as classifier for closed set, text-dependent speaker recognition. The performance of the systems is assessed using a subset of 20 speakers, 10 male and 10 female, drawn from the YOHO speaker verification corpus. Results show that improvement in accuracy of recognition can be achieved through adaptive boosting of the classifier.","PeriodicalId":358168,"journal":{"name":"Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2001.949632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

A novel approach for speaker recognition is proposed. The system makes use of adaptive boosting (AdaBoost) and multilayer perceptrons (MLP) as classifier for closed set, text-dependent speaker recognition. The performance of the systems is assessed using a subset of 20 speakers, 10 male and 10 female, drawn from the YOHO speaker verification corpus. Results show that improvement in accuracy of recognition can be achieved through adaptive boosting of the classifier.
基于自适应增强分类器的说话人识别
提出了一种新的说话人识别方法。该系统利用自适应增强(AdaBoost)和多层感知器(MLP)作为封闭集、文本依赖的说话人识别的分类器。系统的性能使用从YOHO演讲者验证语料库中抽取的20名演讲者(10名男性和10名女性)的子集进行评估。结果表明,通过对分类器进行自适应增强,可以提高识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信