An Improved VM Obstacle Identification Method for Reflection Road

J. Robotics Pub Date : 2022-03-14 DOI:10.1155/2022/3641930
Guoxin Jiang, Yi Xu, Xiaoqing Sang, Xiao-Jin Gong, Shanshan Gao, Ruoyu Zhu, Liming Wang, Yuqiong Wang
{"title":"An Improved VM Obstacle Identification Method for Reflection Road","authors":"Guoxin Jiang, Yi Xu, Xiaoqing Sang, Xiao-Jin Gong, Shanshan Gao, Ruoyu Zhu, Liming Wang, Yuqiong Wang","doi":"10.1155/2022/3641930","DOIUrl":null,"url":null,"abstract":"An obstacle detection method based on VM (VIDAR and machine learning joint detection model) is proposed to improve the monocular vision system's identification accuracy. When VIDAR (Vision-IMU-based detection and range method) detects unknown obstacles in a reflective environment, the reflections of the obstacles are identified as obstacles, reducing the accuracy of obstacle identification. We proposed an obstacle detection method called improved VM to avoid this situation. The experimental results demonstrated that the improved VM could identify and eliminate unknown obstacles. Compared with more advanced detection methods, the improved VM obstacle detection method is more accurate. It can detect unknown obstacles in reflection, reflective road environments.","PeriodicalId":186435,"journal":{"name":"J. Robotics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/3641930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An obstacle detection method based on VM (VIDAR and machine learning joint detection model) is proposed to improve the monocular vision system's identification accuracy. When VIDAR (Vision-IMU-based detection and range method) detects unknown obstacles in a reflective environment, the reflections of the obstacles are identified as obstacles, reducing the accuracy of obstacle identification. We proposed an obstacle detection method called improved VM to avoid this situation. The experimental results demonstrated that the improved VM could identify and eliminate unknown obstacles. Compared with more advanced detection methods, the improved VM obstacle detection method is more accurate. It can detect unknown obstacles in reflection, reflective road environments.
一种改进的反射道路虚拟机障碍物识别方法
为了提高单目视觉系统的识别精度,提出了一种基于VM (VIDAR和机器学习联合检测模型)的障碍物检测方法。当VIDAR(基于vision - imu的检测和距离方法)在反射环境中检测到未知障碍物时,障碍物的反射被识别为障碍物,降低了障碍物识别的准确性。为了避免这种情况,我们提出了一种称为改进VM的障碍物检测方法。实验结果表明,改进后的虚拟机能够识别和消除未知障碍物。与更先进的检测方法相比,改进的VM障碍物检测方法更加准确。它可以在反射、反射的道路环境中检测未知障碍物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信