Efficient DOA Estimation Method with Ambient Noise Elimination for Array of Underwater Acoustic Vector Sensors

Aifei Liu, Shengguo Shi, Xinyi Wang
{"title":"Efficient DOA Estimation Method with Ambient Noise Elimination for Array of Underwater Acoustic Vector Sensors","authors":"Aifei Liu, Shengguo Shi, Xinyi Wang","doi":"10.1109/ICCCWorkshops52231.2021.9538869","DOIUrl":null,"url":null,"abstract":"The ambient noise covariance matrix for the array of underwater acoustic vector-sensors (AVSs) is not equal to an identity matrix with a constant. This fact contradicts the requirement of subspace-based DOA estimation methods such as the conventional MUSIC method, leading to the performance degradation of DOA estimation. In order to overcome this problem, we propose an efficient DOA estimation method with Ambient Noise Elimination (Named as ANE method). In particular, the ANE method first transforms the array covariance matrix to a new one of which the imaginary part eliminates ambient noises. Afterwards, based on the imaginary part of the new covariance matrix, the ANE method completes DOA estimation. The ANE method involves the real-valued Singular Value Decomposition(SVD) and thus it is computationally more efficient than the conventional MUSIC method with the complex-valued Eigenvalue Decomposition(EVD). Simulation and experimental results demonstrate the ANE method is superior to the other methods, especially in a low signal-to-noise ratio (SNR).","PeriodicalId":335240,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCWorkshops52231.2021.9538869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The ambient noise covariance matrix for the array of underwater acoustic vector-sensors (AVSs) is not equal to an identity matrix with a constant. This fact contradicts the requirement of subspace-based DOA estimation methods such as the conventional MUSIC method, leading to the performance degradation of DOA estimation. In order to overcome this problem, we propose an efficient DOA estimation method with Ambient Noise Elimination (Named as ANE method). In particular, the ANE method first transforms the array covariance matrix to a new one of which the imaginary part eliminates ambient noises. Afterwards, based on the imaginary part of the new covariance matrix, the ANE method completes DOA estimation. The ANE method involves the real-valued Singular Value Decomposition(SVD) and thus it is computationally more efficient than the conventional MUSIC method with the complex-valued Eigenvalue Decomposition(EVD). Simulation and experimental results demonstrate the ANE method is superior to the other methods, especially in a low signal-to-noise ratio (SNR).
水声矢量传感器阵列的有效消噪DOA估计方法
水声矢量传感器阵列的环境噪声协方差矩阵不等于带常数的单位矩阵。这与传统MUSIC方法等基于子空间的DOA估计方法的要求相矛盾,导致DOA估计的性能下降。为了克服这一问题,我们提出了一种有效的消除环境噪声的DOA估计方法(称为ANE方法)。其中,ANE方法首先将阵列协方差矩阵变换为新的协方差矩阵,其中虚部消除了环境噪声。然后,基于新协方差矩阵的虚部,ANE方法完成DOA估计。ANE方法涉及到实值奇异值分解(SVD),因此它比传统的MUSIC方法具有复值特征值分解(EVD)的计算效率更高。仿真和实验结果表明,ANE方法优于其他方法,特别是在低信噪比(SNR)下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信