Three-dimensional particle swam optimisation of Mel Frequency Cepstrum Coefficient computation and Multilayer Perceptron neural network for classifying asphyxiated infant cry

A. Zabidi, W. Mansor, L. Khuan, I. Yassin, R. Sahak
{"title":"Three-dimensional particle swam optimisation of Mel Frequency Cepstrum Coefficient computation and Multilayer Perceptron neural network for classifying asphyxiated infant cry","authors":"A. Zabidi, W. Mansor, L. Khuan, I. Yassin, R. Sahak","doi":"10.1109/ICCAIE.2011.6162147","DOIUrl":null,"url":null,"abstract":"The performance Mel Frequency Cepstrum Coefficient (MFCC) in extracting significant feature is influence by several important parameter settings, namely the number of filter banks, and the number of coefficients used in the final representation. These settings affect the way the features are represented, and in turn, effect the performance of the classifier for diagnosis of the disease. Particle Swarm Optimization (PSO) algorithm is used in this work to adjust the parameters of the MFCC feature extraction method, together with the Multi-Layer Perceptron (MLP) classifier structure for diagnosis of infants with asphyxia. The extracted MFCC features were then used to train several MLP classifiers over different initialization values. The simultaneous optimization of MFCC parameters and MLP structure using PSO yielded 93.9% of classification accuracy.","PeriodicalId":132155,"journal":{"name":"2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIE.2011.6162147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The performance Mel Frequency Cepstrum Coefficient (MFCC) in extracting significant feature is influence by several important parameter settings, namely the number of filter banks, and the number of coefficients used in the final representation. These settings affect the way the features are represented, and in turn, effect the performance of the classifier for diagnosis of the disease. Particle Swarm Optimization (PSO) algorithm is used in this work to adjust the parameters of the MFCC feature extraction method, together with the Multi-Layer Perceptron (MLP) classifier structure for diagnosis of infants with asphyxia. The extracted MFCC features were then used to train several MLP classifiers over different initialization values. The simultaneous optimization of MFCC parameters and MLP structure using PSO yielded 93.9% of classification accuracy.
基于Mel频率倒谱系数计算的三维粒子游优化和多层感知器神经网络的窒息婴儿哭声分类
Mel Frequency倒频谱系数(MFCC)提取显著特征的性能受到几个重要参数设置的影响,即滤波器组的数量和最终表示中使用的系数的数量。这些设置影响特征的表示方式,进而影响分类器诊断疾病的性能。本文采用粒子群优化(PSO)算法对MFCC特征提取方法的参数进行调整,并结合多层感知器(MLP)分类器结构进行婴儿窒息诊断。然后使用提取的MFCC特征在不同的初始值上训练多个MLP分类器。利用粒子群算法同时优化MFCC参数和MLP结构,分类准确率达到93.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信