Two Statistical Mixture Model vs. Fuzzy C-Means: In the application of edema segmentation

K. Kadir, Hao Gao, A. Payne, J. Soraghan, C. Berry
{"title":"Two Statistical Mixture Model vs. Fuzzy C-Means: In the application of edema segmentation","authors":"K. Kadir, Hao Gao, A. Payne, J. Soraghan, C. Berry","doi":"10.1109/ICSIPA.2013.6708028","DOIUrl":null,"url":null,"abstract":"Evaluating salvageable myocardial after myocardial infarction (MI) is an important prognosis in the follow up study of MI. Since the extent of myocardial edema delineates the ischemic area-at-risk (AAR) after MI the AAR can be used to estimate the amount of salvageable myocardial post-MI and therefore has potential clinical utility in the management of acute MI patients. Two methods for the segmentation and quantification of edema from T2 weighted MRI data have been presented. The methods presented in this paper are Two Statistical Mixture Model and Fuzzy C-means. Quantitative evaluations of segmentation accuracy for the two algorithms were performed by comparing to manual segmentation on real T2 weighted CMR data collected from Golden Jubilee National Hospital, Glasgow for 16 adult subjects.","PeriodicalId":440373,"journal":{"name":"2013 IEEE International Conference on Signal and Image Processing Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2013.6708028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluating salvageable myocardial after myocardial infarction (MI) is an important prognosis in the follow up study of MI. Since the extent of myocardial edema delineates the ischemic area-at-risk (AAR) after MI the AAR can be used to estimate the amount of salvageable myocardial post-MI and therefore has potential clinical utility in the management of acute MI patients. Two methods for the segmentation and quantification of edema from T2 weighted MRI data have been presented. The methods presented in this paper are Two Statistical Mixture Model and Fuzzy C-means. Quantitative evaluations of segmentation accuracy for the two algorithms were performed by comparing to manual segmentation on real T2 weighted CMR data collected from Golden Jubilee National Hospital, Glasgow for 16 adult subjects.
两种统计混合模型与模糊c均值:在水肿分割中的应用
心肌梗死(MI)后可挽救心肌的评估是心肌梗死随访研究中的重要预后指标。由于心肌水肿程度描述了心肌梗死后缺血危险面积(AAR), AAR可用于估计心肌梗死后可挽救心肌的数量,因此在急性心肌梗死患者的治疗中具有潜在的临床应用价值。提出了两种从T2加权MRI数据中分割和量化水肿的方法。本文提出了两种统计混合模型和模糊c均值方法。通过与人工分割进行比较,对来自格拉斯哥金禧国家医院的16名成人受试者的真实T2加权CMR数据进行了定量评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信