Squarer exploration for energy-efficient sum of squared differences

Ismael Seidel, M. Monteiro, José Luís Almada Güntzel, L. Agostini
{"title":"Squarer exploration for energy-efficient sum of squared differences","authors":"Ismael Seidel, M. Monteiro, José Luís Almada Güntzel, L. Agostini","doi":"10.1109/LASCAS.2016.7451076","DOIUrl":null,"url":null,"abstract":"The main reason for the long time and high energy requirements of state-of-the-art Video Coding (VC) standards, such as the HEVC, is the large amount of distortion calculations. Among the most known and used ones is the Sum of Squared Differences (SSD) which has a strong correlation with the Peak Signal-to-Noise Ratio (PSNR). Such correlation is explored by current encoders to provide a good trade-off between rate and distortion. Once VC is mandatory in current battery-powered devices, the adopted distortion metric must be as energy-efficient as possible. Although simple, the SSD requires a square operation, which hardware realization is costly. Thus, some VC hardware designs replace the SSD by the Sum of Absolute Differences (SAD). However, using SAD instead of SSD pays a price in coding efficiency. In this work we investigate four hardware designs for the square operation. Synthesis results for the designed architectures are compared to a reference SAD design from the literature. The best SSD architecture, using clock gating, requires only 20% more energy than SAD.","PeriodicalId":129875,"journal":{"name":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2016.7451076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The main reason for the long time and high energy requirements of state-of-the-art Video Coding (VC) standards, such as the HEVC, is the large amount of distortion calculations. Among the most known and used ones is the Sum of Squared Differences (SSD) which has a strong correlation with the Peak Signal-to-Noise Ratio (PSNR). Such correlation is explored by current encoders to provide a good trade-off between rate and distortion. Once VC is mandatory in current battery-powered devices, the adopted distortion metric must be as energy-efficient as possible. Although simple, the SSD requires a square operation, which hardware realization is costly. Thus, some VC hardware designs replace the SSD by the Sum of Absolute Differences (SAD). However, using SAD instead of SSD pays a price in coding efficiency. In this work we investigate four hardware designs for the square operation. Synthesis results for the designed architectures are compared to a reference SAD design from the literature. The best SSD architecture, using clock gating, requires only 20% more energy than SAD.
对节能的平方和差的平方探索
目前最先进的视频编码(VC)标准(如HEVC)需要长时间和高能量的主要原因是大量的失真计算。其中最著名和最常用的是与峰值信噪比(PSNR)有很强相关性的平方差和(SSD)。目前的编码器探索了这种相关性,以在速率和失真之间提供良好的权衡。一旦VC在当前的电池供电设备中是强制性的,所采用的失真度量必须尽可能节能。虽然简单,但SSD需要平方操作,硬件实现成本很高。因此,一些VC硬件设计用绝对差和(SAD)代替SSD。然而,使用SAD代替SSD要付出编码效率方面的代价。在这项工作中,我们研究了四种硬件设计的平方运算。将所设计的体系结构的综合结果与文献中的参考SAD设计进行了比较。最好的SSD架构,使用时钟门控,只需要比SAD多20%的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信