From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation with Batch Stimulus

Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany, Tsung-Wei Huang
{"title":"From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation with Batch Stimulus","authors":"Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany, Tsung-Wei Huang","doi":"10.1145/3545008.3545091","DOIUrl":null,"url":null,"abstract":"High-throughput RTL simulation is critical for verifying today’s highly complex SoCs. Recent research has explored accelerating RTL simulation by leveraging event-driven approaches or partitioning heuristics to speed up simulation on a single stimulus. To further accelerate throughput performance, industry-quality functional verification signoff must explore running multiple stimulus (i.e., batch stimulus) simultaneously, either with directed tests or random inputs. In this paper, we propose RTLFlow, a GPU-accelerated RTL simulation flow with batch stimulus. RTLflow first transpiles RTL into CUDA kernels that each simulates a partition of the RTL simultaneously across multiple stimulus. It also leverages CUDA Graph and pipeline scheduling for efficient runtime execution. Measuring experimental results on a large industrial design (NVDLA) with 65536 stimulus, we show that RTLflow running on a single A6000 GPU can achieve a 40 × runtime speed-up when compared to an 80-thread multi-core CPU baseline.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"286 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3545091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

High-throughput RTL simulation is critical for verifying today’s highly complex SoCs. Recent research has explored accelerating RTL simulation by leveraging event-driven approaches or partitioning heuristics to speed up simulation on a single stimulus. To further accelerate throughput performance, industry-quality functional verification signoff must explore running multiple stimulus (i.e., batch stimulus) simultaneously, either with directed tests or random inputs. In this paper, we propose RTLFlow, a GPU-accelerated RTL simulation flow with batch stimulus. RTLflow first transpiles RTL into CUDA kernels that each simulates a partition of the RTL simultaneously across multiple stimulus. It also leverages CUDA Graph and pipeline scheduling for efficient runtime execution. Measuring experimental results on a large industrial design (NVDLA) with 65536 stimulus, we show that RTLflow running on a single A6000 GPU can achieve a 40 × runtime speed-up when compared to an 80-thread multi-core CPU baseline.
从RTL到CUDA:批量刺激下RTL仿真的GPU加速流程
高通量RTL仿真对于验证当今高度复杂的soc至关重要。最近的研究探索了通过利用事件驱动方法或分区启发式来加速单个刺激的模拟来加速RTL模拟。为了进一步加速吞吐量性能,工业质量的功能验证签名必须探索同时运行多个刺激(即批量刺激),无论是直接测试还是随机输入。在本文中,我们提出了RTLFlow,一个gpu加速的批量刺激的RTL仿真流。RTLflow首先将RTL转换成CUDA内核,每个内核在多个刺激中同时模拟RTL的一部分。它还利用CUDA图形和管道调度来实现高效的运行时执行。在具有65536个刺激的大型工业设计(NVDLA)上测量实验结果表明,与80线程多核CPU基线相比,RTLflow在单个A6000 GPU上运行可以实现40倍的运行时加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信