{"title":"From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation with Batch Stimulus","authors":"Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany, Tsung-Wei Huang","doi":"10.1145/3545008.3545091","DOIUrl":null,"url":null,"abstract":"High-throughput RTL simulation is critical for verifying today’s highly complex SoCs. Recent research has explored accelerating RTL simulation by leveraging event-driven approaches or partitioning heuristics to speed up simulation on a single stimulus. To further accelerate throughput performance, industry-quality functional verification signoff must explore running multiple stimulus (i.e., batch stimulus) simultaneously, either with directed tests or random inputs. In this paper, we propose RTLFlow, a GPU-accelerated RTL simulation flow with batch stimulus. RTLflow first transpiles RTL into CUDA kernels that each simulates a partition of the RTL simultaneously across multiple stimulus. It also leverages CUDA Graph and pipeline scheduling for efficient runtime execution. Measuring experimental results on a large industrial design (NVDLA) with 65536 stimulus, we show that RTLflow running on a single A6000 GPU can achieve a 40 × runtime speed-up when compared to an 80-thread multi-core CPU baseline.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"286 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3545091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
High-throughput RTL simulation is critical for verifying today’s highly complex SoCs. Recent research has explored accelerating RTL simulation by leveraging event-driven approaches or partitioning heuristics to speed up simulation on a single stimulus. To further accelerate throughput performance, industry-quality functional verification signoff must explore running multiple stimulus (i.e., batch stimulus) simultaneously, either with directed tests or random inputs. In this paper, we propose RTLFlow, a GPU-accelerated RTL simulation flow with batch stimulus. RTLflow first transpiles RTL into CUDA kernels that each simulates a partition of the RTL simultaneously across multiple stimulus. It also leverages CUDA Graph and pipeline scheduling for efficient runtime execution. Measuring experimental results on a large industrial design (NVDLA) with 65536 stimulus, we show that RTLflow running on a single A6000 GPU can achieve a 40 × runtime speed-up when compared to an 80-thread multi-core CPU baseline.