Landing CG on EARTH: A Case Study of Fine-Grained Multithreading on an Evolutionary Path

K. B. Theobald, G. Agrawal, Rishi Kumar, G. Heber, G. Gao, Paul V. Stodghill, K. Pingali
{"title":"Landing CG on EARTH: A Case Study of Fine-Grained Multithreading on an Evolutionary Path","authors":"K. B. Theobald, G. Agrawal, Rishi Kumar, G. Heber, G. Gao, Paul V. Stodghill, K. Pingali","doi":"10.1109/SC.2000.10011","DOIUrl":null,"url":null,"abstract":"We report on our work in developing a fine-grained multithreaded solution for the communication-intensive Conjugate Gradient (CG) problem. In our recent work, we developed a simple yet efficient program for sparse matrix-vector multiply on a multi-threaded system. This paper presents an effective mechanism for the reduction-broadcast phase, which is integrated with the sparse MVM, resulting in a scalable implementation of the complete CG application. Three major observations from our experiments on the EARTH multithreaded testbed are: (1) The scalability of our CG implementation is impressive, e.g., absolute speedup is 90 on 120 processors for the NAS CG class B input. (2) Our dataflow-style reduction-broadcast network based on fine-grain multithreading is twice as fast as a serial reduction scheme on the same system. (3) By slowing down the network by a factor of 2, no notable degradation of overall CG performance was observed.","PeriodicalId":228250,"journal":{"name":"ACM/IEEE SC 2000 Conference (SC'00)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2000 Conference (SC'00)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2000.10011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We report on our work in developing a fine-grained multithreaded solution for the communication-intensive Conjugate Gradient (CG) problem. In our recent work, we developed a simple yet efficient program for sparse matrix-vector multiply on a multi-threaded system. This paper presents an effective mechanism for the reduction-broadcast phase, which is integrated with the sparse MVM, resulting in a scalable implementation of the complete CG application. Three major observations from our experiments on the EARTH multithreaded testbed are: (1) The scalability of our CG implementation is impressive, e.g., absolute speedup is 90 on 120 processors for the NAS CG class B input. (2) Our dataflow-style reduction-broadcast network based on fine-grain multithreading is twice as fast as a serial reduction scheme on the same system. (3) By slowing down the network by a factor of 2, no notable degradation of overall CG performance was observed.
在地球上着陆CG:进化路径上细粒度多线程的案例研究
我们报告了我们在为通信密集型共轭梯度(CG)问题开发细粒度多线程解决方案方面的工作。在我们最近的工作中,我们开发了一个简单而高效的多线程系统稀疏矩阵向量乘法程序。本文提出了一种有效的还原-广播阶段机制,该机制与稀疏MVM相结合,从而实现了完整的CG应用程序的可扩展实现。从我们在EARTH多线程测试平台上的实验中得出的三个主要观察结果是:(1)我们的CG实现的可扩展性令人印象深刻,例如,对于NAS CG B类输入,在120个处理器上的绝对加速是90。(2)基于细粒度多线程的数据流式约简广播网络的速度是同一系统上串行约简方案的两倍。(3)通过将网络的速度降低2倍,没有观察到整体CG性能的显著下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信