Embedding Point Sets into Plane Graphs of Small Dilation

Annette Ebbers-Baumann, Ansgar Grüne, R. Klein, Marek Karpinski, Christian Knauer, A. Lingas
{"title":"Embedding Point Sets into Plane Graphs of Small Dilation","authors":"Annette Ebbers-Baumann, Ansgar Grüne, R. Klein, Marek Karpinski, Christian Knauer, A. Lingas","doi":"10.1142/S0218195907002318","DOIUrl":null,"url":null,"abstract":"Let S be a set of points in the plane. What is the minimum possible dilation of all plane graphs that contain S? Even for a set S as simple as five points evenly placed on the circle, this question seems hard to answer; it is not even clear if there exists a lower bound >1. In this paper we provide the first upper and lower bounds for the embedding problem. \n \nEach finite point set can be embedded into the vertex set of a finite triangulation of dilation ≤ 1.1247. \n \nEach embedding of a closed convex curve has dilation ≥ 1.00157. \n \nLet P be the plane graph that results from intersecting n infinite families of equidistant, parallel lines in general position. Then the vertex set of P has dilation $\\geq 2/\\sqrt{3} \\approx 1.1547$.","PeriodicalId":285210,"journal":{"name":"International Journal of Computational Geometry and Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218195907002318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Let S be a set of points in the plane. What is the minimum possible dilation of all plane graphs that contain S? Even for a set S as simple as five points evenly placed on the circle, this question seems hard to answer; it is not even clear if there exists a lower bound >1. In this paper we provide the first upper and lower bounds for the embedding problem. Each finite point set can be embedded into the vertex set of a finite triangulation of dilation ≤ 1.1247. Each embedding of a closed convex curve has dilation ≥ 1.00157. Let P be the plane graph that results from intersecting n infinite families of equidistant, parallel lines in general position. Then the vertex set of P has dilation $\geq 2/\sqrt{3} \approx 1.1547$.
在小膨胀平面图中嵌入点集
设S是平面上点的集合。所有包含S的平面图的最小可能展开是多少?即使是像5个点均匀地放在圆上这样简单的集合S,这个问题似乎也很难回答;甚至不清楚是否存在一个下限。本文给出了嵌入问题的第一上界和下界。每个有限点集都可以嵌入到膨胀≤1.1247的有限三角剖分的顶点集中。闭凸曲线的每次嵌入膨胀率≥1.00157。设P是平面图形,它是由无限组等距平行线在一般位置相交而成。那么P的顶点集有膨胀$\geq 2/\sqrt{3} \approx 1.1547$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信