TFmeta: A Machine Learning Approach to Uncover Transcription Factors Governing Metabolic Reprogramming

Yi Zhang, Xiaofei Zhang, A. Lane, T. Fan, Jinze Liu
{"title":"TFmeta: A Machine Learning Approach to Uncover Transcription Factors Governing Metabolic Reprogramming","authors":"Yi Zhang, Xiaofei Zhang, A. Lane, T. Fan, Jinze Liu","doi":"10.1145/3233547.3233580","DOIUrl":null,"url":null,"abstract":"Metabolic reprogramming is a hallmark of cancer. In cancer cells, transcription factors (TFs) govern metabolic reprogramming through abnormally increasing or decreasing the transcription rate of metabolic enzymes, which provides cancer cells growth advantages and concurrently leads to the altered metabolic phenotypes observed in many cancers. Consequently, targeting TFs that govern metabolic reprogramming can be highly effective for novel cancer therapeutics. In this work, we present TFmeta, a machine learning approach to uncover TFs that govern reprogramming of cancer metabolism. Our approach achieves state-of-the-art performance in reconstructing interactions between TFs and their target genes on public benchmark data sets. Leveraging TF binding profiles inferred from genome-wide ChIP-Seq experiments and 150 RNA-Seq samples from 75 paired cancerous (CA) and non-cancerous (NC) human lung tissues, our approach predicted 19 key TFs that may be the major regulators of the gene expression changes of metabolic enzymes of the central metabolic pathway glycolysis, which may underlie the dysregulation of glycolysis in non-small-cell lung cancer patients.","PeriodicalId":131906,"journal":{"name":"Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3233547.3233580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Metabolic reprogramming is a hallmark of cancer. In cancer cells, transcription factors (TFs) govern metabolic reprogramming through abnormally increasing or decreasing the transcription rate of metabolic enzymes, which provides cancer cells growth advantages and concurrently leads to the altered metabolic phenotypes observed in many cancers. Consequently, targeting TFs that govern metabolic reprogramming can be highly effective for novel cancer therapeutics. In this work, we present TFmeta, a machine learning approach to uncover TFs that govern reprogramming of cancer metabolism. Our approach achieves state-of-the-art performance in reconstructing interactions between TFs and their target genes on public benchmark data sets. Leveraging TF binding profiles inferred from genome-wide ChIP-Seq experiments and 150 RNA-Seq samples from 75 paired cancerous (CA) and non-cancerous (NC) human lung tissues, our approach predicted 19 key TFs that may be the major regulators of the gene expression changes of metabolic enzymes of the central metabolic pathway glycolysis, which may underlie the dysregulation of glycolysis in non-small-cell lung cancer patients.
TFmeta:一种揭示控制代谢重编程的转录因子的机器学习方法
代谢重编程是癌症的一个标志。在癌细胞中,转录因子(tf)通过异常增加或降低代谢酶的转录率来控制代谢重编程,这为癌细胞的生长提供了优势,同时也导致了许多癌症中观察到的代谢表型改变。因此,靶向控制代谢重编程的tf对于新型癌症治疗非常有效。在这项工作中,我们提出了TFmeta,一种机器学习方法来发现控制癌症代谢重编程的tf。我们的方法在公共基准数据集上重建tf与其目标基因之间的相互作用方面实现了最先进的性能。利用全基因组ChIP-Seq实验推断的TF结合谱和来自75对癌性(CA)和非癌性(NC)人肺组织的150个RNA-Seq样本,我们的方法预测了19个关键TF,这些TF可能是中心代谢途径糖酵解代谢酶基因表达变化的主要调节因子,这可能是非小细胞肺癌患者糖酵解失调的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信