LearnedSort as a learning-augmented SampleSort: Analysis and Parallelization

Ivan Carvalho, Ramon Lawrence
{"title":"LearnedSort as a learning-augmented SampleSort: Analysis and Parallelization","authors":"Ivan Carvalho, Ramon Lawrence","doi":"10.1145/3603719.3603731","DOIUrl":null,"url":null,"abstract":"This work analyzes and parallelizes LearnedSort, the novel algorithm that sorts using machine learning models based on the cumulative distribution function. LearnedSort is analyzed under the lens of algorithms with predictions, and it is argued that LearnedSort is a learning-augmented SampleSort. A parallel LearnedSort algorithm is developed combining LearnedSort with the state-of-the-art SampleSort implementation, IPS4o. Benchmarks on synthetic and real-world datasets demonstrate improved parallel performance for parallel LearnedSort compared to IPS4o and other sorting algorithms.","PeriodicalId":314512,"journal":{"name":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603719.3603731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work analyzes and parallelizes LearnedSort, the novel algorithm that sorts using machine learning models based on the cumulative distribution function. LearnedSort is analyzed under the lens of algorithms with predictions, and it is argued that LearnedSort is a learning-augmented SampleSort. A parallel LearnedSort algorithm is developed combining LearnedSort with the state-of-the-art SampleSort implementation, IPS4o. Benchmarks on synthetic and real-world datasets demonstrate improved parallel performance for parallel LearnedSort compared to IPS4o and other sorting algorithms.
LearnedSort作为学习增强的SampleSort:分析和并行化
这项工作分析并并行化了LearnedSort,这是一种使用基于累积分布函数的机器学习模型进行排序的新算法。在预测算法的视角下对LearnedSort进行分析,认为LearnedSort是一种学习增强的SampleSort。将LearnedSort与最先进的SampleSort实现ips40相结合,开发了一个并行LearnedSort算法。合成数据集和真实数据集的基准测试表明,与ips40和其他排序算法相比,并行LearnedSort的并行性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信