1.9 Atomic displacement parameters

W. Kuhs
{"title":"1.9 Atomic displacement parameters","authors":"W. Kuhs","doi":"10.1107/97809553602060000908","DOIUrl":null,"url":null,"abstract":"The theory of lattice dynamics shows that the atomic thermal Debye–Waller factor is related to the atomic displacements. In the harmonic approximation, these are fully described by a fully symmetric second-order tensor. Anharmonicity and disorder, however, cause deviations from a Gaussian distribution of the atomic displacements around the atomic position. A generalized description of atomic displacements therefore also involves first-, third-, fourth- and even higher-order displacement terms.The description of the properties of these tensors is the purpose of this chapter. The number of independent tensor coefficients depends on the site symmetry of the atom and are given in tables. The symmetry restrictions according to the site symmetry are tabulated for second- to sixth-rank thermal motion tensors. A selection of representation surfaces of higher-rank tensors showing the distribution of anharmonic deformation densities is given at the end of the chapter. \n \n \nKeywords: \n \nGram–Charlier series; \natomic displacement; \ncumulants; \ninvariants; \nquasimoments; \nrepresentation surface; \nsite symmetry; \nsite-symmetry restrictions; \ntensor contraction; \ntensor expansion","PeriodicalId":338076,"journal":{"name":"International Tables for Crystallography","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Tables for Crystallography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/97809553602060000908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The theory of lattice dynamics shows that the atomic thermal Debye–Waller factor is related to the atomic displacements. In the harmonic approximation, these are fully described by a fully symmetric second-order tensor. Anharmonicity and disorder, however, cause deviations from a Gaussian distribution of the atomic displacements around the atomic position. A generalized description of atomic displacements therefore also involves first-, third-, fourth- and even higher-order displacement terms.The description of the properties of these tensors is the purpose of this chapter. The number of independent tensor coefficients depends on the site symmetry of the atom and are given in tables. The symmetry restrictions according to the site symmetry are tabulated for second- to sixth-rank thermal motion tensors. A selection of representation surfaces of higher-rank tensors showing the distribution of anharmonic deformation densities is given at the end of the chapter. Keywords: Gram–Charlier series; atomic displacement; cumulants; invariants; quasimoments; representation surface; site symmetry; site-symmetry restrictions; tensor contraction; tensor expansion
1.9原子位移参数
晶格动力学理论表明,原子热德拜-沃勒因子与原子位移有关。在调和近似中,这些是由一个完全对称的二阶张量完全描述的。然而,非调和性和无序性会导致原子位移偏离原子位置周围的高斯分布。因此,原子位移的广义描述也涉及一阶、三阶、四阶甚至高阶位移项。描述这些张量的性质是本章的目的。独立张量系数的数目取决于原子的位置对称性,并在表格中给出。对二至六阶热运动张量,根据位置对称性给出了对称限制。在本章的最后给出了显示非调和变形密度分布的高阶张量的表示曲面的选择。关键词:Gram-Charlier级数;原子位移;累积量;不变量;quasimoments;表示表面;网站对称;site-symmetry限制;张量萎缩;张量的扩张
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信