P. C. Wong, W. Cowley, Harlan Foote, E. Jurrus, James J. Thomas
{"title":"Visualizing sequential patterns for text mining","authors":"P. C. Wong, W. Cowley, Harlan Foote, E. Jurrus, James J. Thomas","doi":"10.1109/INFVIS.2000.885097","DOIUrl":null,"url":null,"abstract":"A sequential pattern in data mining is a finite series of elements such as A/spl rarr/B/spl rarr/C/spl rarr/D where A, B, C, and D are elements of the same domain. The mining of sequential patterns is designed to find patterns of discrete events that frequently happen in the same arrangement along a timeline. Like association and clustering, the mining of sequential patterns is among the most popular knowledge discovery techniques that apply statistical measures to extract useful information from large datasets. As out computers become more powerful, we are able to mine bigger datasets and obtain hundreds of thousands of sequential patterns in full detail. With this vast amount of data, we argue that neither data mining nor visualization by itself can manage the information and reflect the knowledge effectively. Subsequently, we apply visualization to augment data mining in a study of sequential patterns in large text corpora. The result shows that we can learn more and more quickly in an integrated visual data-mining environment.","PeriodicalId":399031,"journal":{"name":"IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFVIS.2000.885097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79
Abstract
A sequential pattern in data mining is a finite series of elements such as A/spl rarr/B/spl rarr/C/spl rarr/D where A, B, C, and D are elements of the same domain. The mining of sequential patterns is designed to find patterns of discrete events that frequently happen in the same arrangement along a timeline. Like association and clustering, the mining of sequential patterns is among the most popular knowledge discovery techniques that apply statistical measures to extract useful information from large datasets. As out computers become more powerful, we are able to mine bigger datasets and obtain hundreds of thousands of sequential patterns in full detail. With this vast amount of data, we argue that neither data mining nor visualization by itself can manage the information and reflect the knowledge effectively. Subsequently, we apply visualization to augment data mining in a study of sequential patterns in large text corpora. The result shows that we can learn more and more quickly in an integrated visual data-mining environment.