Compiled hardware acceleration of Molecular Dynamics code

J. Villarreal, W. Najjar
{"title":"Compiled hardware acceleration of Molecular Dynamics code","authors":"J. Villarreal, W. Najjar","doi":"10.1109/FPL.2008.4630035","DOIUrl":null,"url":null,"abstract":"The objective of molecular dynamics (MD) simulations is to determine the shape of a molecule in a given biomolecular environment. These simulations are very demanding computationally, where simulations of a few milliseconds can take days or months depending on the number of atoms involved. Therefore, MD simulations are a prime candidate for FPGA-based code acceleration. We have investigated the possible acceleration of the commonly used MD program NAMD. This code is highly optimized for software based execution and does not benefit from an FPGA-based acceleration as written. We have therefore developed a modified version, based on the calculations NAMD performs, that streams a set of data through a highly pipelined circuit on the FPGA. We have used the ROCCC compiler toolset to generate the circuit and implemented it on the SGI Altix 4700 fitted with a RASC RC100 blade.","PeriodicalId":137963,"journal":{"name":"2008 International Conference on Field Programmable Logic and Applications","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Field Programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2008.4630035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The objective of molecular dynamics (MD) simulations is to determine the shape of a molecule in a given biomolecular environment. These simulations are very demanding computationally, where simulations of a few milliseconds can take days or months depending on the number of atoms involved. Therefore, MD simulations are a prime candidate for FPGA-based code acceleration. We have investigated the possible acceleration of the commonly used MD program NAMD. This code is highly optimized for software based execution and does not benefit from an FPGA-based acceleration as written. We have therefore developed a modified version, based on the calculations NAMD performs, that streams a set of data through a highly pipelined circuit on the FPGA. We have used the ROCCC compiler toolset to generate the circuit and implemented it on the SGI Altix 4700 fitted with a RASC RC100 blade.
编译硬件加速的分子动力学代码
分子动力学(MD)模拟的目的是在给定的生物分子环境中确定分子的形状。这些模拟对计算的要求非常高,几毫秒的模拟可能需要几天或几个月的时间,这取决于所涉及的原子数量。因此,MD仿真是基于fpga的代码加速的主要候选。我们已经研究了可能的加速常用的MD程序NAMD。这段代码针对基于软件的执行进行了高度优化,并没有从基于fpga的加速中获益。因此,我们根据NAMD执行的计算开发了一个修改版本,该版本通过FPGA上的高度流水线电路传输一组数据。我们使用ROCCC编译器工具集来生成电路,并在配备RASC RC100刀片的SGI Altix 4700上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信