Finite Difference Methods for Parabolic Equations

Jichun Li, Yitung Chen
{"title":"Finite Difference Methods for Parabolic Equations","authors":"Jichun Li, Yitung Chen","doi":"10.1201/9780429266027-2","DOIUrl":null,"url":null,"abstract":"(1)  ut −∆u = f in Ω× (0, T ), u = 0 on ∂Ω× (0, T ), u(·, 0) = u0 in Ω. Here u = u(x, t) is a function of spatial variable x ∈ Ω ⊂ R and time variable t ∈ (0, T ). The ending time T could be +∞. The Laplace operator ∆ is taking with respect to the spatial variable. For the simplicity of exposition, we consider only homogenous Dirichlet boundary condition and comment on the adaptation to Neumann and other type of boundary conditions. Besides the boundary condition on ∂Ω, we also need to assign the function value at time t = 0 which is called initial condition. For parabolic equations, the boundary ∂Ω× (0, T )∪Ω×{t = 0} is called the parabolic boundary. Therefore the initial condition can be also thought as a boundary condition.","PeriodicalId":107191,"journal":{"name":"Computational Partial Differential Equations Using MATLAB®","volume":"27 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Partial Differential Equations Using MATLAB®","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429266027-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

(1)  ut −∆u = f in Ω× (0, T ), u = 0 on ∂Ω× (0, T ), u(·, 0) = u0 in Ω. Here u = u(x, t) is a function of spatial variable x ∈ Ω ⊂ R and time variable t ∈ (0, T ). The ending time T could be +∞. The Laplace operator ∆ is taking with respect to the spatial variable. For the simplicity of exposition, we consider only homogenous Dirichlet boundary condition and comment on the adaptation to Neumann and other type of boundary conditions. Besides the boundary condition on ∂Ω, we also need to assign the function value at time t = 0 which is called initial condition. For parabolic equations, the boundary ∂Ω× (0, T )∪Ω×{t = 0} is called the parabolic boundary. Therefore the initial condition can be also thought as a boundary condition.
抛物型方程的有限差分法
(1)ut−∆u = fΩ×(0,T)在∂u = 0Ω×(0,T), u(·0)=Ω的情况。其中u = u(x, t)是空间变量x∈Ω∧R与时间变量t∈(0,t)的函数。结束时间T可以是+∞。拉普拉斯算子∆对空间变量取。为了说明的简单性,我们只考虑齐次狄利克雷边界条件,并评论了对诺伊曼和其他类型边界条件的适应性。除了∂Ω上的边界条件,我们还需要在时间t = 0时分配函数值,这称为初始条件。对于抛物线方程,边界∂Ω× (0, T)∪Ω×{T = 0}称为抛物线边界。因此,初始条件也可以看作是边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信