Toward Data-Driven Glare Classification and Prediction for Marine Megafauna Survey

J. Power, Derek Jacoby, M. Drouin, Guillaume Durand, Y. Coady, Julian Meng
{"title":"Toward Data-Driven Glare Classification and Prediction for Marine Megafauna Survey","authors":"J. Power, Derek Jacoby, M. Drouin, Guillaume Durand, Y. Coady, Julian Meng","doi":"10.48550/arXiv.2303.12730","DOIUrl":null,"url":null,"abstract":"Critically endangered species in Canadian North Atlantic waters are systematically surveyed to estimate species populations which influence governing policies. Due to its impact on policy, population accuracy is important. This paper lays the foundation towards a data-driven glare modelling system, which will allow surveyors to preemptively minimize glare. Surveyors use a detection function to estimate megafauna populations which are not explicitly seen. A goal of the research is to maximize useful imagery collected, to that end we will use our glare model to predict glare and optimize for glare-free data collection. To build this model, we leverage a small labelled dataset to perform semi-supervised learning. The large dataset is labelled with a Cascading Random Forest Model using a na\\\"ive pseudo-labelling approach. A reflectance model is used, which pinpoints features of interest, to populate our datasets which allows for context-aware machine learning models. The pseudo-labelled dataset is used on two models: a Multilayer Perceptron and a Recurrent Neural Network. With this paper, we lay the foundation for data-driven mission planning; a glare modelling system which allows surveyors to preemptively minimize glare and reduces survey reliance on the detection function as an estimator of whale populations during periods of poor subsurface visibility.","PeriodicalId":391161,"journal":{"name":"ICPR Workshops","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICPR Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.12730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Critically endangered species in Canadian North Atlantic waters are systematically surveyed to estimate species populations which influence governing policies. Due to its impact on policy, population accuracy is important. This paper lays the foundation towards a data-driven glare modelling system, which will allow surveyors to preemptively minimize glare. Surveyors use a detection function to estimate megafauna populations which are not explicitly seen. A goal of the research is to maximize useful imagery collected, to that end we will use our glare model to predict glare and optimize for glare-free data collection. To build this model, we leverage a small labelled dataset to perform semi-supervised learning. The large dataset is labelled with a Cascading Random Forest Model using a na\"ive pseudo-labelling approach. A reflectance model is used, which pinpoints features of interest, to populate our datasets which allows for context-aware machine learning models. The pseudo-labelled dataset is used on two models: a Multilayer Perceptron and a Recurrent Neural Network. With this paper, we lay the foundation for data-driven mission planning; a glare modelling system which allows surveyors to preemptively minimize glare and reduces survey reliance on the detection function as an estimator of whale populations during periods of poor subsurface visibility.
海洋巨型动物调查中数据驱动的眩光分类与预测
对加拿大北大西洋水域的极度濒危物种进行了系统调查,以估计影响治理政策的物种种群。由于其对政策的影响,人口准确性很重要。本文为数据驱动的眩光建模系统奠定了基础,该系统将允许测量员先发制人地减少眩光。测量员使用检测函数来估计没有被明确看到的巨型动物的数量。研究的一个目标是最大限度地收集有用的图像,为此,我们将使用我们的眩光模型来预测眩光并优化无眩光数据收集。为了建立这个模型,我们利用一个小的标记数据集来执行半监督学习。该大型数据集使用一种朴素的伪标记方法用级联随机森林模型进行标记。我们使用了一个反射模型,它可以精确定位感兴趣的特征,以填充我们的数据集,从而允许上下文感知的机器学习模型。伪标记数据集用于两个模型:多层感知器和递归神经网络。本文为数据驱动的任务规划奠定了基础;眩光建模系统,使测量员能够先发制人地减少眩光,并减少在水下能见度较差期间对鲸鱼种群估计的检测功能的调查依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信