Yuchen Shao, Yuanan Zhao, Haodong Ma, C. Li, Da-wei Li, J. Shao
{"title":"Efficient method for determination of laser conditions adopted in laser-induced micro-lithology based on laser polymerization size analysis","authors":"Yuchen Shao, Yuanan Zhao, Haodong Ma, C. Li, Da-wei Li, J. Shao","doi":"10.1117/12.2539750","DOIUrl":null,"url":null,"abstract":"Since negative photoresist SU-8 has become a common material for multi-photon micro-lithology, it is necessary to study laser conditions adopted in lithology process. Optical transmittance of SU-8 was tested. According to Urbach optical-absorption theory and Gaussian laser lateral spatial intensity envelope, relationship between theory and actual polymerization size of SU-8 was shown. Experimentally, we investigated multi-photon polymerization threshold and laser-induced damage of SU-8 under femtosecond laser irradiation with the pulse width of 45 fs at 800 nm by 1-on-1 tests. The polymerization and damage threshold at 45 fs are 2.7 and 8.9 TW/cm2, respectively. Polymerization and damage morphologies are shown with high contrast and polymerization sizes are measured under SEM. Theoretical polymerization sizes versus laser fluence are calculated by laser-induce multi-photon polymerization size analysis (LMPSA), including Urbach optical-absorption theory and Gaussian laser lateral spatial intensity distribution. The calculated results show that diffusion exists in the femtosecond laser-induced polymerization.","PeriodicalId":197837,"journal":{"name":"SPIE/SIOM Pacific Rim Laser Damage","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/SIOM Pacific Rim Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2539750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Since negative photoresist SU-8 has become a common material for multi-photon micro-lithology, it is necessary to study laser conditions adopted in lithology process. Optical transmittance of SU-8 was tested. According to Urbach optical-absorption theory and Gaussian laser lateral spatial intensity envelope, relationship between theory and actual polymerization size of SU-8 was shown. Experimentally, we investigated multi-photon polymerization threshold and laser-induced damage of SU-8 under femtosecond laser irradiation with the pulse width of 45 fs at 800 nm by 1-on-1 tests. The polymerization and damage threshold at 45 fs are 2.7 and 8.9 TW/cm2, respectively. Polymerization and damage morphologies are shown with high contrast and polymerization sizes are measured under SEM. Theoretical polymerization sizes versus laser fluence are calculated by laser-induce multi-photon polymerization size analysis (LMPSA), including Urbach optical-absorption theory and Gaussian laser lateral spatial intensity distribution. The calculated results show that diffusion exists in the femtosecond laser-induced polymerization.