Optimal multi-scale patterns in time series streams

S. Papadimitriou, Philip S. Yu
{"title":"Optimal multi-scale patterns in time series streams","authors":"S. Papadimitriou, Philip S. Yu","doi":"10.1145/1142473.1142545","DOIUrl":null,"url":null,"abstract":"We introduce a method to discover optimal local patterns, which concisely describe the main trends in a time series. Our approach examines the time series at multiple time scales (i.e., window sizes) and efficiently discovers the key patterns in each. We also introduce a criterion to select the best window sizes, which most concisely capture the key oscillatory as well as aperiodic trends. Our key insight lies in learning an optimal orthonormal transform from the data itself, as opposed to using a predetermined basis or approximating function (such as piecewise constant, short-window Fourier or wavelets), which essentially restricts us to a particular family of trends. We go one step further, lifting even that limitation. Furthermore, our method lends itself to fast, incremental estimation in a streaming setting. Experimental evaluation shows that our method can capture meaningful patterns in a variety of settings. Our streaming approach requires order of magnitude less time and space, while still producing concise and informative patterns.","PeriodicalId":416090,"journal":{"name":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1142473.1142545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 121

Abstract

We introduce a method to discover optimal local patterns, which concisely describe the main trends in a time series. Our approach examines the time series at multiple time scales (i.e., window sizes) and efficiently discovers the key patterns in each. We also introduce a criterion to select the best window sizes, which most concisely capture the key oscillatory as well as aperiodic trends. Our key insight lies in learning an optimal orthonormal transform from the data itself, as opposed to using a predetermined basis or approximating function (such as piecewise constant, short-window Fourier or wavelets), which essentially restricts us to a particular family of trends. We go one step further, lifting even that limitation. Furthermore, our method lends itself to fast, incremental estimation in a streaming setting. Experimental evaluation shows that our method can capture meaningful patterns in a variety of settings. Our streaming approach requires order of magnitude less time and space, while still producing concise and informative patterns.
时间序列流的最优多尺度模式
我们介绍了一种发现最优局部模式的方法,该方法可以简洁地描述时间序列的主要趋势。我们的方法在多个时间尺度(即窗口大小)上检查时间序列,并有效地发现每个时间尺度中的关键模式。我们还引入了一个选择最佳窗口大小的准则,以最简洁地捕捉关键的振荡和非周期趋势。我们的关键见解在于从数据本身学习最优的标准正交变换,而不是使用预先确定的基或近似函数(如分段常数,短窗口傅立叶或小波),这基本上限制了我们对特定趋势的家族。我们更进一步,甚至解除了这个限制。此外,我们的方法有助于在流设置中进行快速、增量的估计。实验评估表明,我们的方法可以在各种设置中捕获有意义的模式。我们的流处理方法需要更少的时间和空间,同时仍然产生简洁和信息丰富的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信