A study on fuzzy clustering-based k-anonymization for privacy preserving crowd movement analysis with face recognition

Katsuhiro Honda, Masahiro Omori, S. Ubukata, A. Notsu
{"title":"A study on fuzzy clustering-based k-anonymization for privacy preserving crowd movement analysis with face recognition","authors":"Katsuhiro Honda, Masahiro Omori, S. Ubukata, A. Notsu","doi":"10.1109/SOCPAR.2015.7492779","DOIUrl":null,"url":null,"abstract":"k-anonymization is a basic technique for privacy preserving data analysis of personal information. This paper studies the applicability of a fuzzy clustering-based anonymization approach to crowd movement analysis, in which each individual movement is captured through face recognition in camera images. Before utilizing each face feature values, k-anonymization is performed by coding cluster elements, which are extracted by fuzzy k-member clustering. In an experimental study, the advantage and availability of fuzzy partitions are investigated through comparisons of reproduction qualities and anonymization costs with several fuzzy degree settings.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

k-anonymization is a basic technique for privacy preserving data analysis of personal information. This paper studies the applicability of a fuzzy clustering-based anonymization approach to crowd movement analysis, in which each individual movement is captured through face recognition in camera images. Before utilizing each face feature values, k-anonymization is performed by coding cluster elements, which are extracted by fuzzy k-member clustering. In an experimental study, the advantage and availability of fuzzy partitions are investigated through comparisons of reproduction qualities and anonymization costs with several fuzzy degree settings.
基于模糊聚类的k-匿名人脸识别人群运动分析研究
k-匿名化是一种保护个人信息隐私的基本技术。本文研究了一种基于模糊聚类的匿名化方法在人群运动分析中的适用性,该方法通过人脸识别捕捉相机图像中的每个个体运动。在利用每个人脸特征值之前,通过编码聚类元素进行k匿名化,并通过模糊k成员聚类提取聚类元素。在实验研究中,通过比较不同模糊度设置下的再现质量和匿名化成本,探讨了模糊分区的优势和可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信