Context-Aware Multi-instance Learning Based on Hierarchical Sparse Representation

Bing Li, Weihua Xiong, Weiming Hu
{"title":"Context-Aware Multi-instance Learning Based on Hierarchical Sparse Representation","authors":"Bing Li, Weihua Xiong, Weiming Hu","doi":"10.1109/ICDM.2011.43","DOIUrl":null,"url":null,"abstract":"Multi-instance learning (MIL), a variant of supervised learning framework, has been applied in many applications. More recently, researchers focus on two important issues for MIL: Instances' contextual structures representation in the same bag and online MIL schemes. In this paper, we present an effective context-aware multi-instance learning technique using a hierarchical sparse representation (HSR-MIL) that addresses the two challenges simultaneously. We firstly construct the inner contextual structure among instances in the same bag based on a novel sparse $\\varepsilon$-graph. We then propose a graph kernel based sparse bag classifier through a modified kernel sparse coding in higher-dimension feature space. At last, the HSR-MIL approach is extended to achieve online learning manner with an incremental kernel matrix update scheme. The experiments on several data sets demonstrate that our method has better performances and online learning ability.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Multi-instance learning (MIL), a variant of supervised learning framework, has been applied in many applications. More recently, researchers focus on two important issues for MIL: Instances' contextual structures representation in the same bag and online MIL schemes. In this paper, we present an effective context-aware multi-instance learning technique using a hierarchical sparse representation (HSR-MIL) that addresses the two challenges simultaneously. We firstly construct the inner contextual structure among instances in the same bag based on a novel sparse $\varepsilon$-graph. We then propose a graph kernel based sparse bag classifier through a modified kernel sparse coding in higher-dimension feature space. At last, the HSR-MIL approach is extended to achieve online learning manner with an incremental kernel matrix update scheme. The experiments on several data sets demonstrate that our method has better performances and online learning ability.
基于层次稀疏表示的上下文感知多实例学习
多实例学习(MIL)作为监督学习框架的一种变体,已经在许多领域得到了应用。最近,研究人员关注了MIL的两个重要问题:同一包中的实例上下文结构表示和在线MIL方案。在本文中,我们提出了一种有效的上下文感知多实例学习技术,该技术使用分层稀疏表示(HSR-MIL)同时解决了这两个挑战。我们首先基于一种新颖的稀疏$\varepsilon$-图构造了同一袋子中实例之间的内部上下文结构。然后,通过改进高维特征空间的核稀疏编码,提出了一种基于图核的稀疏袋分类器。最后,将HSR-MIL方法扩展为采用增量核矩阵更新方案实现在线学习的方法。在多个数据集上的实验表明,我们的方法具有更好的性能和在线学习能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信