Machine Learning Algorithms for Remaining Useful Life Prediction of Rolling Bearings

Débora Zumpichiatti, Janaína Gomide
{"title":"Machine Learning Algorithms for Remaining Useful Life Prediction of Rolling Bearings","authors":"Débora Zumpichiatti, Janaína Gomide","doi":"10.5753/eniac.2022.227195","DOIUrl":null,"url":null,"abstract":"O aumento da complexidade dos sistemas mecânicos muda drasticamente os métodos usados para monitorar e analisar como esses sistemas envelhecem. O objetivo desse trabalho é realizar a previsão do tempo de vida útil restante de equipamentos utilizando uma abordagem de prognóstico baseada em dados e algoritmos de aprendizado de máquina. O conjunto de dados utilizado apresenta dados de temperatura e vibração de testes até a falha de rolamentos. A metodologia proposta foi avaliada e constatou-se a importância de uma fase de tratamento de dados robusta. Os resultados obtidos para conjuntos de dados julgados como apropriados pela metodologia apresentaram resultados similares ou superiores aos trabalhos relacionados.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

O aumento da complexidade dos sistemas mecânicos muda drasticamente os métodos usados para monitorar e analisar como esses sistemas envelhecem. O objetivo desse trabalho é realizar a previsão do tempo de vida útil restante de equipamentos utilizando uma abordagem de prognóstico baseada em dados e algoritmos de aprendizado de máquina. O conjunto de dados utilizado apresenta dados de temperatura e vibração de testes até a falha de rolamentos. A metodologia proposta foi avaliada e constatou-se a importância de uma fase de tratamento de dados robusta. Os resultados obtidos para conjuntos de dados julgados como apropriados pela metodologia apresentaram resultados similares ou superiores aos trabalhos relacionados.
滚动轴承剩余使用寿命预测的机器学习算法
机械系统复杂性的增加极大地改变了用于监测和分析这些系统如何老化的方法。这项工作的目标是使用基于数据和机器学习算法的预测方法来预测设备的剩余寿命。所使用的数据集提供了轴承失效前的温度和振动测试数据。对提出的方法进行了评估,并发现了稳健数据处理阶段的重要性。该方法认为合适的数据集的结果显示了类似或优于相关工作的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信