QoS enhanced distributed load balancing and task scheduling framework for wireless networks using hybrid optimisation algorithm

Abhijit A. Rajguru, S. Apte
{"title":"QoS enhanced distributed load balancing and task scheduling framework for wireless networks using hybrid optimisation algorithm","authors":"Abhijit A. Rajguru, S. Apte","doi":"10.1504/IJCNDS.2018.10014506","DOIUrl":null,"url":null,"abstract":"Quality of service (QoS) is the main challenging issue in load balancing, task scheduling process in dynamic systems, such as grid system, peer-to-peer system, ad hoc networks, cloud computing system, pervasive computing system, and online social network system. The inefficient task scheduling process reduces QoS parameters, such as energy consumption, throughput, network lifetime, deadline missing ratio and schedule delay time. In this paper, we proposed QoS enhanced distributed load balancing, task scheduling frameworks for wireless networks (WNs) using hybrid optimisation algorithm (EDFHOA). We improve QoS of distributed frameworks by two phase system through an efficient clustering methodology using particle swarm optimisation (PSO) algorithm for load balancing in the first phase. A cuckoo search (CS) algorithm with load balanced for task scheduling in the second phase. The proposed two-phase hybrid algorithms enhance task scheduling, such as latency experienced by the balanced clustering, energy consumption, throughput, network lifetime, efficient resource utilisation and less processing time requirement and highly accurate than fault tolerant task allocation algorithm (FTAOA).","PeriodicalId":209177,"journal":{"name":"Int. J. Commun. Networks Distributed Syst.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Commun. Networks Distributed Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCNDS.2018.10014506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Quality of service (QoS) is the main challenging issue in load balancing, task scheduling process in dynamic systems, such as grid system, peer-to-peer system, ad hoc networks, cloud computing system, pervasive computing system, and online social network system. The inefficient task scheduling process reduces QoS parameters, such as energy consumption, throughput, network lifetime, deadline missing ratio and schedule delay time. In this paper, we proposed QoS enhanced distributed load balancing, task scheduling frameworks for wireless networks (WNs) using hybrid optimisation algorithm (EDFHOA). We improve QoS of distributed frameworks by two phase system through an efficient clustering methodology using particle swarm optimisation (PSO) algorithm for load balancing in the first phase. A cuckoo search (CS) algorithm with load balanced for task scheduling in the second phase. The proposed two-phase hybrid algorithms enhance task scheduling, such as latency experienced by the balanced clustering, energy consumption, throughput, network lifetime, efficient resource utilisation and less processing time requirement and highly accurate than fault tolerant task allocation algorithm (FTAOA).
基于混合优化算法的无线网络分布式负载平衡和任务调度框架
服务质量(QoS)是网格系统、点对点系统、自组织网络、云计算系统、普适计算系统和在线社交网络系统等动态系统中负载均衡、任务调度过程的主要挑战问题。低效的任务调度过程降低了QoS参数,如能耗、吞吐量、网络生存期、截止日期缺失率和调度延迟时间。在本文中,我们提出了一种基于混合优化算法(EDFHOA)的QoS增强分布式负载平衡任务调度框架。采用粒子群优化(PSO)算法实现第一阶段的负载均衡,通过有效的聚类方法提高分布式框架的两阶段系统的QoS。一种负载均衡的布谷鸟搜索(CS)算法用于第二阶段的任务调度。与容错任务分配算法(FTAOA)相比,本文提出的两阶段混合算法提高了任务调度能力,如均衡聚类所经历的延迟、能耗、吞吐量、网络寿命、高效的资源利用、更少的处理时间要求和更高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信