Understanding Dialogue Acts by Bayesian Inference and Reinforcement Learning

Akane Matsushima, N. Oka, Chie Fukada, Kazuaki Tanaka
{"title":"Understanding Dialogue Acts by Bayesian Inference and Reinforcement Learning","authors":"Akane Matsushima, N. Oka, Chie Fukada, Kazuaki Tanaka","doi":"10.1145/3349537.3352786","DOIUrl":null,"url":null,"abstract":"evel (Austin 1962). DAs constitute the most fundamental part of communication, and the comprehension of DAs is essential to human-agent interaction. The purpose of this study is to enable an agent to behave properly in response to DAs without their explicit representation on one hand and to estimate the DAs explicitly on the other hand. The former is realized by reinforcement learning and the latter by Bayesian inference. The simulation results demonstrated that the agent not only responded to DAs successfully but also inferred the DAs correctly.","PeriodicalId":188834,"journal":{"name":"Proceedings of the 7th International Conference on Human-Agent Interaction","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Human-Agent Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349537.3352786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

evel (Austin 1962). DAs constitute the most fundamental part of communication, and the comprehension of DAs is essential to human-agent interaction. The purpose of this study is to enable an agent to behave properly in response to DAs without their explicit representation on one hand and to estimate the DAs explicitly on the other hand. The former is realized by reinforcement learning and the latter by Bayesian inference. The simulation results demonstrated that the agent not only responded to DAs successfully but also inferred the DAs correctly.
通过贝叶斯推理和强化学习理解对话行为
水平(奥斯汀1962)。DAs是沟通中最基本的部分,理解DAs对人机交互至关重要。本研究的目的是一方面使代理能够在没有明确表示的情况下对DAs做出适当的反应,另一方面使代理能够明确地估计DAs。前者通过强化学习实现,后者通过贝叶斯推理实现。仿真结果表明,该智能体不仅能够成功地响应DAs,而且能够正确地推断DAs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信