A comparison of iterative and DFT-Based polynomial matrix eigenvalue decompositions

Fraser K. Coutts, K. Thompson, I. Proudler, Stephan Weiss
{"title":"A comparison of iterative and DFT-Based polynomial matrix eigenvalue decompositions","authors":"Fraser K. Coutts, K. Thompson, I. Proudler, Stephan Weiss","doi":"10.1109/CAMSAP.2017.8313113","DOIUrl":null,"url":null,"abstract":"A variety of algorithms have been developed to compute an approximate polynomial matrix eigenvalue decomposition (PEVD). As an extension of the ordinary EVD to polynomial matrices, the PEVD will generate paraunitary matrices that diagonalise a parahermitian matrix. This paper compares the decomposition accuracies of two fundamentally different methods capable of computing an approximate PEVD. The first of these — sequential matrix diagonalisation (SMD) — iteratively decomposes a parahermitian matrix, while the second DFT-based algorithm computes a pointwise in frequency decomposition. We demonstrate through the use of examples that both algorithms can achieve varying levels of decomposition accuracy, and provide results that indicate the type of broadband multichannel problems that are better suited to each algorithm. It is shown that iterative methods, which generate paraunitary eigenvectors, are suited for general applications with a low number of sensors, while a DFT-based approach is useful for fixed, finite order decompositions with a small number of lags.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

A variety of algorithms have been developed to compute an approximate polynomial matrix eigenvalue decomposition (PEVD). As an extension of the ordinary EVD to polynomial matrices, the PEVD will generate paraunitary matrices that diagonalise a parahermitian matrix. This paper compares the decomposition accuracies of two fundamentally different methods capable of computing an approximate PEVD. The first of these — sequential matrix diagonalisation (SMD) — iteratively decomposes a parahermitian matrix, while the second DFT-based algorithm computes a pointwise in frequency decomposition. We demonstrate through the use of examples that both algorithms can achieve varying levels of decomposition accuracy, and provide results that indicate the type of broadband multichannel problems that are better suited to each algorithm. It is shown that iterative methods, which generate paraunitary eigenvectors, are suited for general applications with a low number of sensors, while a DFT-based approach is useful for fixed, finite order decompositions with a small number of lags.
迭代与基于dft的多项式矩阵特征值分解的比较
各种算法已经发展计算近似多项式矩阵特征值分解(PEVD)。作为普通EVD到多项式矩阵的扩展,PEVD将生成对角化拟多项式矩阵的拟多项式矩阵。本文比较了计算近似PEVD的两种基本不同方法的分解精度。其中第一个-序列矩阵对角化(SMD) -迭代分解parparhertian矩阵,而第二个基于dft的算法在频率分解中计算逐点。我们通过使用示例演示了两种算法都可以达到不同程度的分解精度,并提供了表明更适合每种算法的宽带多通道问题类型的结果。结果表明,生成准酉特征向量的迭代方法适用于传感器数量较少的一般应用,而基于dft的方法适用于具有少量滞后的固定有限阶分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信