An Empirical Study on Unsupervised Pre-training Approaches in Regression Problems

P. Saikia, R. Baruah
{"title":"An Empirical Study on Unsupervised Pre-training Approaches in Regression Problems","authors":"P. Saikia, R. Baruah","doi":"10.1109/SSCI.2018.8628674","DOIUrl":null,"url":null,"abstract":"Unsupervised pre-training allows for efficient training of deep architectures. It provides a good set of initialised weights to the deep architecture that can provide better generalisation of the data. In this paper, we aim to empirically analyse the effect of different unsupervised pre-training approaches for the task of regression on different datasets. We have considered two most common pre-training methods namely deep belief network and stacked autoencoder, and compared the results with the standard training algorithm without pretraining. The models with pretraining performed better than the model without pretraining in terms of error, convergence and the prediction of pattern. The results of the experiments also show the importance of hyperparameters tuning, specially learning rate, in providing a better prediction result. This study once again confirmed the effectiveness and potential of pretraining approach in nonlinear regression problem.","PeriodicalId":235735,"journal":{"name":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2018.8628674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Unsupervised pre-training allows for efficient training of deep architectures. It provides a good set of initialised weights to the deep architecture that can provide better generalisation of the data. In this paper, we aim to empirically analyse the effect of different unsupervised pre-training approaches for the task of regression on different datasets. We have considered two most common pre-training methods namely deep belief network and stacked autoencoder, and compared the results with the standard training algorithm without pretraining. The models with pretraining performed better than the model without pretraining in terms of error, convergence and the prediction of pattern. The results of the experiments also show the importance of hyperparameters tuning, specially learning rate, in providing a better prediction result. This study once again confirmed the effectiveness and potential of pretraining approach in nonlinear regression problem.
回归问题中无监督预训练方法的实证研究
无监督预训练允许深度架构的有效训练。它为深度体系结构提供了一组良好的初始化权重,可以提供更好的数据泛化。在本文中,我们旨在实证分析不同的无监督预训练方法对不同数据集的回归任务的影响。我们考虑了两种最常见的预训练方法,即深度信念网络和堆叠自编码器,并将结果与不进行预训练的标准训练算法进行了比较。经过预训练的模型在误差、收敛性和模式预测方面都优于未经过预训练的模型。实验结果也表明了超参数整定,特别是学习率对于提供更好的预测结果的重要性。本研究再次证实了预训练方法在非线性回归问题中的有效性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信